电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(全国通用)高考数学 考前三个月复习冲刺 专题7 第33练 直线与圆锥曲线的综合问题 理-人教版高三全册数学试题VIP免费

(全国通用)高考数学 考前三个月复习冲刺 专题7 第33练 直线与圆锥曲线的综合问题 理-人教版高三全册数学试题_第1页
1/11
(全国通用)高考数学 考前三个月复习冲刺 专题7 第33练 直线与圆锥曲线的综合问题 理-人教版高三全册数学试题_第2页
2/11
(全国通用)高考数学 考前三个月复习冲刺 专题7 第33练 直线与圆锥曲线的综合问题 理-人教版高三全册数学试题_第3页
3/11
第33练直线与圆锥曲线的综合问题[题型分析·高考展望]本部分重点考查直线和圆锥曲线的综合性问题,从近几年的高考试题来看,除了在解答题中必然有直线与圆锥曲线的联立外,在选择题或填空题中出现的圆锥曲线问题也经常与直线结合起来.本部分的主要特点是运算量大、思维难度较高,但有时灵活地借助几何性质来分析问题可能会收到事半功倍的效果.预测在今后高考中,主要围绕着直线与椭圆的位置关系进行命题,有时会与向量的共线、模和数量积等联系起来;对于方程的求解,不要忽视轨迹的求解形式,后面的设问将是对最值、定值、定点、参数范围的考查,探索类和存在性问题考查的概率也很高.常考题型精析题型一直线与圆锥曲线位置关系的判断及应用例1(1)(2015·福建)已知椭圆E:+=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是()A.B.C.D.(2)设焦点在x轴上的椭圆M的方程为+=1(b>0),其离心率为.①求椭圆M的方程;②若直线l过点P(0,4),则直线l何时与椭圆M相交?点评对于求过定点的直线与圆锥曲线的位置关系问题,一是利用方程的根的判别式来确定,但一定要注意,利用判别式的前提是二次项系数不为零;二是利用图形来处理和理解;三是直线过定点位置不同,导致直线与圆锥曲线的位置关系也不同.变式训练1已知椭圆C:+=1(a>b>0)的焦距为4,且过点P(,).(1)求椭圆C的方程;(2)设Q(x0,y0)(x0y0≠0)为椭圆C上一点,过点Q作x轴的垂线,垂足为E.取点A(0,2),连接AE,过点A作AE的垂线交x轴于点D.点G是点D关于y轴的对称点,作直线QG,问这样作出的直线QG是否与椭圆C一定有唯一的公共点?并说明理由.题型二直线与圆锥曲线的弦的问题例2设椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,且焦距为6,点P是椭圆短轴的一个端点,△PF1F2的周长为16.(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线l被椭圆C所截得的线段中点的坐标.点评直线与圆锥曲线弦的问题包括求弦的方程,弦长,弦的位置确定,弦中点坐标轨迹等问题,解决这些问题的总体思路是设相关量,找等量关系,利用几何性质列方程(组),不等式(组)或利用一元二次方程根与系数的关系,使问题解决.变式训练2在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.(1)求椭圆C的方程;(2)A,B为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C于点P.设OP=tOE,求实数t的值.高考题型精练1.(2015·北京)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.2.已知抛物线C的顶点为O(0,0),焦点为F(0,1).(1)求抛物线C的方程;(2)过点F作直线交抛物线C于A,B两点.若直线AO、BO分别交直线l:y=x-2于M、N两点,求|MN|的最小值.3.已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为.设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|·|BF|的最小值.4.已知点A,B是抛物线C:y2=2px(p>0)上不同的两点,点D在抛物线C的准线l上,且焦点F到直线x-y+2=0的距离为.(1)求抛物线C的方程;(2)现给出以下三个论断:①直线AB过焦点F;②直线AD过原点O;③直线BD平行于x轴.请你以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题,并加以证明.答案精析第33练直线与圆锥曲线的综合问题常考题型精析例1(1)A解析设左焦点为F0,连接F0A,F0B,则四边形AFBF0为平行四边形. |AF|+|BF|=4,∴|AF|+|AF0|=4,∴a=2.设M(0,b),则=≥,∴1≤b<2.离心率e====∈,故选A.(2)解①因为椭圆M的离心率为,所以=2,得b2=2.所以椭圆M的方程为+=1.②(ⅰ)过点P(0,4)的直线l垂直于x轴时,直线l与椭圆M相交.(ⅱ)过点P(0,4)的直线l与x轴不垂直时,可设直线l的方程为y=k...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(全国通用)高考数学 考前三个月复习冲刺 专题7 第33练 直线与圆锥曲线的综合问题 理-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部