第22章二次函数一、选择题1.将抛物线y=2x2向右平移一个单位后得到的新抛物线的解析式为()A.y=2(x+1)2B.y=2(x-1)2C.y=2x2+1D.y=2x2-12.某企业是一家专门生产季节性产品的企业,当产品无利润时,企业会自动停产,经过调研预测,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=﹣n2+14n﹣24,则企业停产的月份为()A.2月和12月B.2月至12月C.1月D.1月、2月和12月3.若二次函数y=(x-m)2-1,当x≤1时,y随x的增大而减小,则m的取值范围是()A.m=1B.m>1C.m≥1D.m≤14.若二次函数y=﹣x2+4x+c的图象经过A(1,y1),B(﹣1,y2),C(2+,y3)三点,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y2<y1<y35.下面表格列出了函数y=ax2+bx+c(a,b、c是常数,且a≠0),部分x与y对应值,那么方程ax2+bx+c=0的一个根x的取值范围是()x6.176.186.196.20y﹣0.03﹣0.010.020.04A.6<x<6.7B.6.7<x<6.18C.6.18<x<6.19D.6.9<x<9.206.若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b,k的值分别()A.0,5B.﹣4,1C.﹣4,5D.﹣4,﹣17.二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345y1250﹣3﹣4﹣30512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当-0;②b>a+c;③4a+2b+c>0;④b2-4ac>0;其中正确的是________.19.已知二次函数y=kx2﹣7x﹣7的图象和x轴有交点,则k的取值范围________.20.二次函数y=x2-6x+n的部分图象如图所示,若关于x的一元二次方程x2-6x+n=0的一个解为x1=1,则另一个解x2=________.三、解答题21.某商店购买一批单价为20元的日用品,如果以单价30元销售,那么半月内可以售出400件.据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高一元,销售量相应减少20件.如何提高销售价,才能在半月内获得最大利润?22.已知y是x的二次函数,当x=2时,y=﹣4,当y=4时,x恰为方程2x2﹣x﹣8=0的根.(1)解方程2x2﹣x﹣8=0(2)求这个二次函数的解析式.23.已知:如图,直线y=﹣x﹣3与坐标轴交于点A,C,经过点A,C的抛物线y=ax2+bx﹣3与x轴交于点B(2,0).(1)求抛物线的解析式;(2)点D是抛物线在第三象限图象上的动点,是否存在点D,使得△DAC的面积最大?若存在,请求这个最大值并求出点D的坐标;若不存在,请说明理由;(3)过点D作DE⊥x轴于E,交AC于F,若AC恰好将△ADE的面积分成1:4两部分,请求出此时点D的坐标.24.已知抛物线y=x2+bx+c的顶点为P,与y轴交于点A,与直线OP交于点B.(1)如图1,若点P的横坐标为1,点B的坐标为(3,6),试确定抛物线的解析式;(2)在(1)的条件下,若点M是直线AB下方抛物线上的一点,且S△ABM=3,求点M的坐标;(3)如图2,若点P在第一象限,且PA=PO,过点P作PD⊥x轴于点D.将抛物线y=x2+bx+c平移,平移后的抛物线经过点A、D,该抛物线与x轴的另一个交点为C,请探究四边形OABC的形状,并说明理由.