四川省泸州市2019届高三数学二诊考试试题理(含解析)一、选择题(本大题共12小题,共60.0分)1.已知集合,则()A.B.C.D.【答案】A【解析】【分析】先求出集合B,然后根据集合的交集的运算求出.【详解】解:B={x|-3<x<3},又∴A∩B={1}.故选:A.【点睛】本题考查集合列举法、描述法的定义,交集的运算,属于基础题.2.=()A.B.C.D.【答案】C【解析】【分析】先对分母实数化,然后按照复数代数形式的乘除运算法则化简.【详解】=,故选C.【点睛】本题考查复数代数形式的乘除运算,属于基础题.3.已知,则tan2α=()A.B.C.D.【答案】B【解析】【分析】直接由正切函数的倍角公式,代入求出答案即可.【详解】由正切函数倍角公式:故选B【点睛】本题主要考查了正切倍角公式,属于基础题.4.是成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】【分析】解出关于x的不等式,再结合充分必要条件的定义找出两者之间的关系.【详解】解:lnx>1⇔x>e x>3⇒x>e,x>e推不出x>3,∴x>3是lnx>1成立的充分不必要条件故选:A.【点睛】本题考查了充分必要条件的判断,解不等式,属于基础题.5.几何体的三视图如图所示,则这个几何体的直观图可以是【答案】B【解析】试题分析:由正视图排除A,C;由侧视图排除D,故B正确.考点:三视图.6.我国三国时期的数学家赵爽为了证明勾股定理创制了一幅“勾股圆方图”,该图是由四个全等的直角三角形组成,它们共同围成了一个如图所示的大正方形和一个小正方形.设直角三角形中一个锐角的正切值为3.在大正方形内随机取一点,则此点取自小正方形内的概率是()A.B.C.D.【答案】D【解析】不妨设两条直角边为,故斜边,即大正方形的边长为,小正方形边长为,故概率为.7.在△ABC中|+|=|-|,AB=3,AC=4,则在方向上的投影是()A.4B.3C.D.5【答案】C【解析】解:在中,,平方整理可得,在方向上的投影是.点晴:平面向量的数量积的相关计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.8.设,,,则的大小关系是()A.B.C.D.【答案】C【解析】【分析】先确定,然后将利用对数的运算,求得,从而得到的大小关系.【详解】由于,所以为三个数中最大的.由于,而,故.综上所述,故选C.【点睛】本小题主要考查指数式和对数式比较大小.解决的方法是区间分段法,如本题中的“和”作为分段的分段点.在题目给定的三个数中,有一个是大于的,有一个是介于和之间的,还有一个是小于的,由此判断出三个数的大小关系.在比较过程中,还用到了对数和指数函数的性质.9.若函数为常数,)的图象关于直线对称,则函数的图象()A.关于直线对称B.关于直线对称C.关于点对称D.关于点对称【答案】D【解析】【分析】利用三角函数的对称性求得a的值,可得g(x)的解析式,再代入选项,利用正弦函数的图象的对称性,得出结论.【详解】解: 函数f(x)=asinx+cosx(a为常数,x∈R)的图象关于直线x=对称,∴f(0)=f(),即,∴a=,所以函数g(x)=sinx+acosx=sinx+cosx=sin(x+),当x=﹣时,g(x)=-,不是最值,故g(x)的图象不关于直线x=﹣对称,故A错误,当x=时,g(x)=1,不是最值,故g(x)的图象不关于直线x=对称,故B错误,当x=时,g(x)=≠0,故C错误,当x=时,g(x)=0,故D正确,故选:D.【点睛】本题考查三角恒等变形以及正弦类函数的对称性,是三角函数中综合性比较强的题目,比较全面地考查了三角函数的图象与性质,属于中档题.10.三棱锥中,底面,若,则该三棱锥外接球的表面积为()A.B.C.D.【答案】C【解析】【分析】先利用正弦定理计算出△ABC的外接圆直径2r,再结合三棱锥的特点,得出球心的位置:过△ABC外接圆圆心的垂线与线段SA中垂面的交点.再利用公式可计算出该三棱锥的外接球直径,最后利用球体表面积公式可得出答案.【详解】解:由于AB=BC=AC=3,则△ABC是...