1数学广角:植树问题一、知识提炼数学广角——植树问题1、在不封闭路线上的植树问题植树问题通常是指沿着一定的路线植树,在不封闭路线上植树,可以看作在直线上种树,分为三种不同的情形。两端都植树:棵树=段数+1只有一端植树:棵树=段数两端都不植树:棵树=段数—1在解决实际问题的时候,可以灵活的选择上面的三种方法找到解决问题的策略。2、在封闭路线上的植树问题在植树问题中,“植树”的路线也可以是一条首尾相接的封闭曲线。比如:正方形、长方形、圆形等等。不管这条封闭曲线是什么形状的,规律始终不变。即:棵树=段数。二、例题讲练方法1、沿一条不封闭的路线的一边植树,可看作在一条直线上植树,植树时两端都要栽,植树棵树=段数+1。例1在一条长3000米的公路一侧植树。每隔100米种一棵,从头到尾一共要植多少棵树?巩固练习园林工人沿公路两侧植树,每隔5米种一棵,一共种了90棵。这条路有多长?2方法2、在两个建筑物之间的一条路线上植树,它的两端都不植树,每侧植树的棵树比段数少1。即:棵树=段数—1例2为庆祝“六?一”儿童节,市实验小学在两座教学楼之间插彩旗,每隔15米插一面彩旗,已知两座教学楼之间的距离是345米,一共要插多少面彩旗?巩固练习一路公共汽车起点站与终点站之间的路程是3200米,如果每隔400米设一个停靠点,一共要设置多少个停靠点?方法3、在一个首尾相连的封闭路线上植树,植树棵树=段数。例3某个风景区里有一个周长1200米的圆形广场,广场的周围每隔25米装有一盏路灯,这个广场周围一共装有多少盏路灯?巩固练习同学们在操场上围成一个圈做游戏,这个圈的周长恰好是100米,如果每相邻两个同学之间都是2米,参加游戏的一共有多少个同学?方法4、沿着正方形的四条边植树,每两棵树之间的距离相等,如果已知每边植树的棵树,求四周一共植树的棵树时,可用(每边植树棵树—1)×4,求出植树总棵树。例4小明用棋子围成了一个空心的正方形,每边有16颗棋子,并且正方形四个顶点上都有一颗。小明围这个正方形共用了多少颗棋子?3巩固练习在一个正方形池塘四周种树,每条边上都种有13棵,并且正方形的四个顶点上都有一颗。这个正方形池塘的周围一共种了多少棵树?三、提高拓展在实际生活中,有一些类似于植树问题的问题,如上楼梯、锯木料等,可按照“植树问题”的方法去解决问题。例小红从1楼走到4楼用了120秒。照这样计算,小红从1楼走到8楼共用多少秒?巩固练习用15秒可以将一根木料锯成4段。如果用同样的速度将这根木料锯成8段,要用多少秒钟?四、课堂练习一)、填空1.学校有一条长60米的小道,计划在道路一旁栽树,每隔3米栽一棵,有()个间隔。如果两端都各栽一棵树,那么共需()棵树苗;如果两端都不栽树,那么共需()棵树苗;如果只有一端栽树,那么共需()棵树苗。2.把10根橡皮筋连接成一个圈,需要打()个结。3.在一个正方形的每条边上摆4枚棋子,四条边上最多能摆()枚,最少能摆()枚。4.豆豆和玲玲同住一幢楼,每层楼之间有20级台阶,豆豆住二楼,玲玲住五楼。豆豆要从自己家到玲玲家去找她玩,需要走()级台阶。5.如下图,每两块正方形瓷砖中间贴一块长方形彩砖。像这样一共贴了50块长方形彩砖,那么正方形瓷砖有()块(第一块和最后一块都是正方形瓷砖)。6.15个同学在操场上围成一个圆圈做游戏,每相邻两个同学之间的距离都是2m,这个圆圈的周长是()m。7.一座楼房每上一层要走18级台阶,王芳回家共上了108级台阶,她家住在()楼。48.小东把一些5角的硬币平均排列在一张正方形纸的周边,每边的硬币数相等,这些硬币的总面值是12元。每边最多能放()枚硬币。二)、选择1.7路公共汽车行驶路线全长8千米,每相邻两站的距离是1千米。一共有几个车站?正确的算式是()。A.7÷1+1B.8÷1-1C.8÷1+12.一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?这道题属于哪种类型?()A.不是植树问题B.两端都栽的植树问题C.两端都不栽的植树问题3.工程队埋电线杆,每隔40m埋一根,连两端在内,共埋71根。这段路全长()米。A.40×(71+1)=2880B.40×71=2840C.40×(71-1)=28004.小...