第一节线粒体与氧化磷酸化第二节叶绿体与光合作用第三节线粒体和叶绿体的半自主性及其起源本章主要内容第一节线粒体与氧化磷酸化一、线粒体的基本形态及动态特征•(一)线粒体的形态、分布及数目•呈颗粒或短线状,直径为0.3~1.0μm,长度为1.5~3.0μm.•分布与细胞内的能量需求密切相关;•线粒体的数目同样呈现动态变化并接受调控与细胞类型相关,随着细胞分化而变化。第一节线粒体与氧化磷酸化•动、植物细胞中均可观察到频繁的线粒体融合与分裂现象,这被认为是线粒体形态调控的基本方式,也是线粒体数目调控的基础。(二)线粒体的融合与分裂5.1.1.3线粒体融合与分裂的分子及细胞学基础线粒体融合与分裂的分子基础:融合与分裂依赖于特定的基因和蛋白质的调控。融合所必需的基因最早发现于果蝇,取名Fzo(fuzzyonion模糊地葱头)Fzo基因编码一个跨膜的GTPase(鸟苷三磷酸酶),定位在线粒体外膜上,介导线粒体的融合。“模糊的葱头”与跨膜大分子GTPase(Fzo)的模式结构:(WT)野生型果蝇精细胞发育过程中线粒体融合形成的大体积球形线粒体。(fzo)突变体中聚集但不融合的小线粒体。(OM)线粒体外膜;(IMS)膜间隙;(IM)线粒体内膜。Bar=2微米。(三)线粒体融合与分裂的分子及细胞生物学基础1.分裂的分子生物学基础•线粒体分裂依赖特定的基因和蛋白质来调控•线粒体分裂需要发动蛋白(dynamin)•dynamin类蛋白是一类大分子GTPase发动蛋白(dynamin)组装和驱动线粒体分裂的模式图2.线粒体融合与分裂的细胞生物学基础•线粒体分裂环(mitochondrialdivisionring)•分裂的三个阶段:早期;中期;后期NishidaKetal.PNAS2003;100:2146-2151电子显微镜下观察到的线粒体分裂装置:(a)研究线粒体和叶绿体分裂装置的经典实验材料,红藻细胞的荧光显微照片(DNA特异性探针DAPI染色)及细胞内线粒体与叶绿体分裂模式图。红藻细胞含一个线粒体和一个叶绿体。在细胞增值过程中,叶绿体(红色自发荧光)率先启动分裂,随后线粒体启动分裂,最后细胞核分裂。红色的环状结构示线粒体和叶绿体的分裂环。(b)电子显微镜下观察到的分裂环平环切面。在3张连续切面(黑白叠加后生成的图片(彩色)上,可以同时观察到线粒体分裂环(大箭头)及叶绿体分裂环(小箭头)。(c)线粒体分裂环的垂环切面。在分裂环的断面上,可以观察到电子密度较高的外环(大箭头)及电子密度相对较低的内环(小箭头)。二、线粒体的超微结构(一)外膜(二)内膜(三)膜间隙(四)线粒体基质二、线粒体的超微结构人淋巴细胞线粒体(A)、拟南芥幼叶线粒体(B)的超微结构及超微结构模式图三、线粒体的立体结构(一)外膜单位膜结构,厚约6nm。外膜中蛋白质和脂质约各占50%,外膜上分布的孔蛋白构成的桶状通道,可根据细胞的状态可逆性地开闭,能够可以通过相对大分分质量的分子。由于外膜的通透性很高,膜间隙中的离子环境几乎与胞质相同。外膜的标志酶是单胺氧化酶(二)内膜单位膜结构,厚6~8nm。内膜有很高的蛋白质/脂质比(质量比≥31∶),缺乏胆固醇,富含心磷脂,这种组成决定了内膜的不透性。线粒体内膜是氧化磷酸化的关键场所,内膜向内延伸形成嵴,嵴上存在许多规则排列的颗粒,称为线粒体基粒即ATP合酶,内膜的标志酶是细胞色素氧化酶。(三)膜间隙宽约6~8nm。膜间隙内的液态介质含有可溶性的酶、底物和辅助因子。腺苷酸激酶是膜间隙的标志酶,可催化ATP分子末端磷酸基团转移到AMP生成ADP。(四)线粒体基质富含可溶性蛋白质的胶状物质。催化线粒体重要生化反应,如三羧酸循环、脂肪酸氧化、氨基酸降解等还含有DNA、RNA、核糖体以及转录、翻译所必需的重要分子。(一)氧化磷酸化的分子结构基础超声波线粒体亚线粒体小泡或颗粒胰蛋白酶颗粒解离,只能传递电子,而不能发生磷酸化颗粒重新装配上电子传递和氧化磷酸化电子传递的组分位于线粒体的内膜,颗粒是氧化磷酸化偶联的因子线粒体内膜在超声波作用下形成亚线粒体小泡ATP合酶分子结构模式图ATP合酶的分子由球形的头部和基部组成,头部朝向线粒体基质,规则性地排布在内膜下并以基部与内膜相连。ATP合酶的头部被称为偶联因子1(F1)...