电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(浙江专用)高考数学一轮复习讲练测 专题3.1 导数的运算及导数的几何意义(讲)(含解析)-人教版高三全册数学试题VIP免费

(浙江专用)高考数学一轮复习讲练测 专题3.1 导数的运算及导数的几何意义(讲)(含解析)-人教版高三全册数学试题_第1页
1/11
(浙江专用)高考数学一轮复习讲练测 专题3.1 导数的运算及导数的几何意义(讲)(含解析)-人教版高三全册数学试题_第2页
2/11
(浙江专用)高考数学一轮复习讲练测 专题3.1 导数的运算及导数的几何意义(讲)(含解析)-人教版高三全册数学试题_第3页
3/11
第01讲导数的运算及导数的几何意义---讲1.了解导数的概念与实际背景,理解导数的几何意义.2.会用基本初等函数的导数公式表和导数的四则运算法则求函数的导数,并能求简单的复合函数的导数(限于形如()faxb)的导数).3.高考预测:(1)导数的运算将依然以工具的形式考查;(2)单独考查导数的运算题目极少.对导数的运算的考查,主要通过考查导数的几何意义、导数的应用来体现.(3)对导数的几何意义的考查,主要有选择题、填空题,也有作为解答题的第一问.常见的命题角度有:①求切线斜率、倾斜角、切线方程.②确定切点坐标问题.③已知切线问题求参数.④切线的综合应用.4.备考重点:(1)熟练掌握基本初等函数的导数公式及导数的四则运算法则;(2)熟练掌握直线的倾斜角、斜率及直线方程的点斜式.知识点1.导数的概念1.函数y=f(x)在x=x0处的导数定义:称函数y=f(x)在x=x0处的瞬时变化率为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即.2.函数f(x)的导函数称函数为f(x)的导函数.【典例1】一质点运动的方程为283st.(1)求质点在[1,1+Δt]这段时间内的平均速度;(2)求质点在t=1时的瞬时速度(用定义及求求导两种方法)【答案】(1);(2)6.1【解析】(1) 283st∴Δs=8-3(1+Δt)2-(8-3×12)=-6Δt-3(Δt)2,.(2)定义法:质点在t=1时的瞬时速度求导法:质点在t时刻的瞬时速度,当t=1时,v=-6×1=-6.【规律方法】1.根据导数的定义求函数()yfx在点0x处导数的方法:①求函数的增量;②求平均变化率;③得导数,简记作:一差、二比、三极限.2.函数的导数与导数值的区间与联系:导数是原来函数的导函数,而导数值是导函数在某一点的函数值,导数值是常数【变式1】若0()3fx,则()A.3B.12C.9D.6【答案】B【解析】法一(注重导数概念的应用的解法):因为,所以2,选B;法二(注重导数定义中各变量的联系的解法):因为,所以(其中:),故选B.知识点2.基本初等函数的导数公式及导数的运算法则1.基本初等函数的导数公式原函数导函数f(x)=c(c为常数)f′(x)=0f(x)=xn(n∈Q*)f′(x)=nxn-1f(x)=sinxf′(x)=cosxf(x)=cosxf′(x)=-sinxf(x)=axf′(x)=axlnaf(x)=exf′(x)=exf(x)=logaxf′(x)=f(x)=lnxf′(x)=2.导数的运算法则(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)(g(x)≠0).(4)复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为yx′=yu′·ux′,即y对x的导数等于y对u的导数与u对x的导数的乘积.【典例2】【2018年天津卷文】已知函数f(x)=exlnx,为f(x)的导函数,则的值为__________.【答案】e3【总结提升】1.求函数导数的一般原则如下:(1)遇到连乘积的形式,先展开化为多项式形式,再求导;(2)遇到根式形式,先化为分数指数幂,再求导;(3)遇到复杂分式,先将分式化简,再求导.2.复合函数的求导方法求复合函数的导数,一般是运用复合函数的求导法则,将问题转化为求基本函数的导数解决.①分析清楚复合函数的复合关系是由哪些基本函数复合而成的,适当选定中间变量;②分步计算中的每一步都要明确是对哪个变量求导,而其中特别要注意的是中间变量;③根据基本函数的导数公式及导数的运算法则,求出各函数的导数,并把中间变量转换成自变量的函数;④复合函数的求导熟练以后,中间步骤可以省略,不必再写出函数的复合过程.【变式2】【2018届陕西省咸阳市三模】已知三次函数的图象如图所示,则__________.【答案】1.【解析】,由的图象知,∴,,∴,故答案为1.4知识点3.函数()yfx在0xx处的导数几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-f(x0)=f′(x0)(x-x0).【典例3】(2019·天津高考真题(文))曲线在点处的切线方程为__________.【答案】【解析】,当时其值为,故所求的切线方程为,即。【规律方法】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(浙江专用)高考数学一轮复习讲练测 专题3.1 导数的运算及导数的几何意义(讲)(含解析)-人教版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部