西南师大附中2010—2011学年度下期期中考试高二数学试题(文科)(总分:150分考试时间:120分钟)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.下列事件:①一个口袋内装有5个红球,从中任取一球是红球;②抛掷两枚骰子,所得点数之和为9;③20()xxR;④方程2350xx有两个不相等的实数根;⑤巴西足球队会在下届世界杯足球赛中夺得冠军。其中,随机事件的个数为()A.1B.2C.3D.42.10(2)x的展开式中,第4项的二项式系数是()A.310CB.310CC.3108CD.3108C3.已知m、n表示直线,、表示平面,下列命题正确的是()A.若////m,,则//mB.若m,,则//mC.若////mnn,,则//mD.若//nmmn,,,则//m4.在空间四边形ABCD中,AD=BC=2a,E、F分别是AB、CD的中点,3EFa,则异面直线AD与BC所成的角为()A.30B.45C.60D.905.如图,长方体ABCD—A1B1C1D1中,AB=AA1=3,AD=4,则AB1与平面ACC1A1所成角的正弦值为()A.22B.225C.255D.1756.从编号分别为1,2,…,7的7张卡片中任意抽取3张,则满足任意两张卡片的数字之差的绝对值不小于2的有()种A.4B.10C.20D.357.5名学生A、B、C、D、E和2位老师甲、乙站成一排合影,其中A、B、C要站在一起,且甲、乙不相邻的排法种数为()A.432B.216C.144D.728.已知直角三角形ABC的直角顶点A在平面外,BC,AB、AC与平面所成的角分别为45、60,25BC,则点A到平面的距离为()A.5B.2C.6D.39.一个正三棱柱恰好有一个内切球(即恰好与两底面和三个侧面都相切)和一外接球(即恰好经过三棱柱的6个顶点),此内切球与外接球的表面积之比为()用心爱心专心1ABCDA1B1C1D1A.1∶3B.1∶3C.1∶5D.1∶510.若012{|10100}xyxxaaa、,其中{1234567}(012)iai,,,,,,,,,且636xy,则实数对(x,y)表示坐标平面上不同点的个数为()A.50个B.70个C.90个D.120个二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.掷一枚骰子两次,所得点数之和为11的概率为______________。12.若1121101211(21)xaaxaxax,则01211aaaa_____________.13.正四面体ABCD的棱长为2,则它的体积为_____________.14.文星湾大桥的两边各装有10只路灯,路灯公司为了节约用电,计划每天22:00后两边分别关掉3只路灯,为了不影响照明,要求关掉的灯不能相邻,那么每一边的关灯方式有_____________种。15.在矩形ABCD中,AB=3,AD=4,P在AD和DC上运动,设ABP,将△ABP沿BP折起,使得二面角A—BP—C成直二面角,当为__________时,AC长最小.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.(本小题满分13分)一个口袋里有4个不同的红球,5个不同的白球(球的大小均一样).从中任取3个球,求3个球为同色球的概率;从中任取4个球,求至少有2个白球的概率.(本小题满分13分)在四棱锥P—ABCD中,PA⊥底面ABCD,底面ABCD是矩形,PA=AD=4,AB=2,E是PD的中点.求证:AE⊥平面PCD;求异面直线PB与AC所成角的大小.(本小题满分13分)求532()xx的二项展开式中的常数项;若32()nxx的二项展开式中,第3项的系数是第2项的系数的5倍,求展开式中所有的有理项.用心爱心专心2(本小题满分12分)正三棱柱ABC—A1B1C1中,已知A1A=AB,D为C1C的中点,O为A1B与AB1的交点.求证:DO⊥平面A1ABB1;求A1B1与平面A1BD所成角的大小。(本小题满分12分)从1到9这9个数字中取2个偶数和3个奇数组成没有重复数字的五位数,试问:能组成多少个不同的五位数?在(1)中的五位数中,奇数有多少个?在(1)中的五位数中,两个偶数不能相邻且三个奇数从小到大排列的有多少个?将(1)中的五位数从小到大排成一列,记为数列{an},那么31254是这个数列中的第几项?(本小题满分12分)如图,在斜三棱柱ABC—A1B1C1中,底面是边长为23的正三角形,点A1在底面ABC上的射影O恰是BC的中点.(1)求证:A1A⊥BC;(2)当侧棱AA1和底面...