第二课时线性规划的实际应用课时分层训练1.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克,B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A,B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是()A.1800元B.2400元C.2800元D.3100元解析:选C设每天分别生产甲产品x桶,乙产品y桶,相应的利润为z元,于是有得z=300x+400y,在坐标平面内画出该不等式组表示的平面区域及直线300x+400y=0,平移该直线,当平移到经过该平面区域内的点A(4,4)时,相应直线在y轴上的截距达到最大,此时z=300x+400y取得最大值,最大值是z=300×4+400×4=2800,即该公司可获得的最大利润是2800元.故选C.2.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为()A.36万元B.31.2万元C.30.4万元D.24万元解析:选B设投资甲项目为x万元,投资乙项目为y万元,获得利润为z万元,则z=0.4x+0.6y,且作出不等式组表示的区域,如图所示,作直线l0:0.4x+0.6y=0,并将l0向上平移到过A点时z取得最大值,由解得即zmax=0.4×24+0.6×36=31.2(万元),故选B.3.某学校用800元购买A、B两种教学用品,A种用品每件100元,B种用品每件160元,两种用品至少各买一件,要使剩下的钱最少,A、B两种用品应各买的件数为()A.2,4B.3,3C.4,2D.不确定解析:选B设买A种用品x件,B种用品y件,剩下的钱为z元,则求z=800-100x-160y取得最小值时的整数解(x,y),用图解法求得整数解为(3,3),即买A种用品3件,B种用品3件.故选B.4.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为()A.2000元B.2200元C.2400元D.2800元解析:选B设需使用甲型货车x辆,乙型货车y辆,运输费用z元,根据题意,得线性约束条件1目标函数z=400x+300y,画图可知,当平移直线400x+300y=0至经过点(4,2)时,z取得最小值2200.5.某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A产品,每千克A产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天能完成至多70箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为()A.甲车间加工原料10箱,乙车间加工原料60箱B.甲车间加工原料15箱,乙车间加工原料55箱C.甲车间加工原料18箱,乙车间加工原料50箱D.甲车间加工原料40箱,乙车间加工原料30箱解析:选B设甲车间加工x箱原料,乙车间加工y箱原料,甲、乙两车间每天总获利为z元.依题意,得z=7×40x+4×50y=280x+200y,作出可行域如图中阴影部分,联立⇒知z在A点取得最大值.6.铁矿石A和B的含铁率a,冶炼每万吨铁矿石的CO2的排放量b及每万吨铁矿石的价格c如下表:ab(万吨)c(百万元)A50%13B70%0.56某冶炼厂至少要生产1.9(万吨)铁,若要求CO2的排放量不超过2(万吨),则购买铁矿石的最少费用为(百万元).解析:设购买铁矿石A,B分别为x,y万吨,购买铁矿石的费用为z(百万元),则2目标函数z=3x+6y.由得记P(1,2),画出可行域,如图所示.当目标函数z=3x+6y过点P(1,2)时,z取到最小值,且最小值为zmin=3×1+6×2=15.答案:157.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该...