§2.3等差数列的前n项和(二)课时目标1.熟练掌握等差数列前n项和的性质,并能灵活运用.2.掌握等差数列前n项和的最值问题.3.理解an与Sn的关系,能根据Sn求an.1.前n项和Sn与an之间的关系对任意数列{an},Sn是前n项和,Sn与an的关系可以表示为an=2.等差数列前n项和公式Sn==na1+d.3.等差数列前n项和的最值(1)在等差数列{an}中当a1>0,d<0时,Sn有最大值,使Sn取到最值的n可由不等式组确定;当a1<0,d>0时,Sn有最小值,使Sn取到最值的n可由不等式组确定.(2)因为Sn=n2+n,若d≠0,则从二次函数的角度看:当d>0时,Sn有最小值;当d<0时,Sn有最大值;且n取最接近对称轴的自然数时,Sn取到最值.一个有用的结论:若Sn=an2+bn,则数列{an}是等差数列.反之亦然.一、选择题1.已知数列{an}的前n项和Sn=n2,则an等于()A.nB.n2C.2n+1D.2n-1答案D2.数列{an}为等差数列,它的前n项和为Sn,若Sn=(n+1)2+λ,则λ的值是()A.-2B.-1C.0D.1答案B解析等差数列前n项和Sn的形式为:Sn=an2+bn,∴λ=-1.3.已知数列{an}的前n项和Sn=n2-9n,第k项满足5
S8,则下列结论错误的是()A.d<0B.a7=0C.S9>S5D.S6与S7均为Sn的最大值答案C解析由S50.又S6=S7⇒a7=0,所以d<0.由S7>S8⇒a8<0,因此,S9-S5=a6+a7+a8+a9=2(a7+a8)<0即S90,由得所以当n=13时,Sn有最大值.S13=25×13+×(-2)=169.因此Sn的最大值为169.方法三由S17=S9,得a10+a11+…+a17=0,而a10+a17=a11+a16=a12+a15=a13+a14,故a13+a14=0.由方法一知d=-2<0,又因为a1>0,所以a13>0,a14<0,故当n=13时,Sn有最大值.S13=25×13+×(-2)=169.因此Sn的最大值为169.9.在等差数列{an}中,已知前三项和为15,最后三项和为78,所有项和为155,则项数n=________.答案10解析由已知,a1+a2+a3=15,an+an-1+an-2=78,两式相加,得(a1+an)+(a2+an-1)+(a3+an-2)=93,即a1+an=31.由Sn===155,得n=10.10.等差数列{an}中,a1<0,S9=S12,该数列在n=k时,前n项和Sn取到最小值,则k的值是________.答案10或11解析方法一由S9=S12,得d=-a1,由,得,解得10≤n≤11.∴当n为10或11时,Sn取最小值,∴该数列前10项或前11项的和最小.方法二由S9=S12,得d=-a1,由Sn=na1+d=n2+n,得Sn=·n2+·n=-2+a1(a1<0),由二次函数性质可知n==10.5时,Sn最小.但n∈N*,故n=10或11时Sn取得最小值.三、解答题11.设等差数列{an}满足a3=5,a10=-9.(1)求{an}的通项公式;(2)求{an}的前n项和Sn及使得Sn最大的序号n的值.解(1)由an=a1+(n-1)d及a3=5,a10=-9得可解得所以数列{an}的通项公式为an=11-2n.(2)由(1)知,Sn=na1+d=10n-n2.因为Sn=-(n-5)2+25,所以当n=5时,Sn取得最大值.12.已知等差数列{an}中,记Sn是它的前n项和,若S2=16,S4=24,求数列{|an|}的前n项和Tn.解由S2=16,S4=24,得即解得所以等差数列{an}的通项公式为an=11-2n(n∈N*).(...