课时分层作业(七)等比数列的性质(建议用时:40分钟)一、选择题1.等比数列{an}中,若a2a6+a=π,则a3a5等于()A.B.C.D.πC[由题意可知a2a6=a=a3a5,∴a3a5=,故选C.]2.已知在等比数列{an}中,an+1<an,a2·a8=6,a4+a6=5,则等于()A.B.C.D.D[由a2·a8=a4·a6=6,a4+a6=5,a6<a4,得a6=2,a4=3,==,故选D.]3.将公比为q的等比数列{an}依次取相邻两项的乘积组成新的数列a1a2,a2a3,a3a4,….此数列是()A.公比为q的等比数列B.公比为q2的等比数列C.公比为q3的等比数列D.不一定是等比数列B[由于=×=q·q=q2,n≥2且n∈N+,∴{anan+1}是以q2为公比的等比数列,故选B.]4.等比数列x,3x+3,6x+6,…的第4项等于()A.-24B.0C.12D.24A[由题意可知(3x+3)2=x(6x+6),即x2+4x+3=0,解得x=-3或x=-1(舍去),所以等比数列的前4项依次为-3,-6,-12,-24,故选A.]5.已知各项均为正数的等比数列{an}中,a1a2a3=5,a7a8a9=10,则a4a5a6等于()A.4B.6C.7D.5D[∵{an}为等比数列,∴a1a2a3,a4a5a6,a7a8a9也成等比数列,∴(a4a5a6)2=(a1a2a3)·(a7a8a9)=5×10=50,又{an}各项为正,故a4a5a6=5.]二、填空题6.在等比数列{an}中,若a2,a8是方程x2-3x+6=0的两个根,则a4a6=________.6[由题知a2·a8=6,根据等比数列的性质,a4·a6=a2a8=6.]7.已知等比数列{an}中,a1=2,且a4a6=4a,则a3=________.1[设等比数列{an}的公比为q,由等比数列的性质并结合已知条件得a=4·aq4.1∴q4=,q2=,∴a3=a1q2=2×=1.]8.等差数列{an}的公差d≠0,a1=20,且a3,a7,a9成等比数列,则d=________.-2[由a3,a7,a9成等比数列,则a3a9=a,即(a1+2d)(a1+8d)=(a1+6d)2,化简得2a1d+20d2=0,由a1=20,d≠0,得d=-2.]三、解答题9.已知等比数列{an},若a1+a2+a3=7,a1a2a3=8,求an.[解]法一:因为a1a3=a,a1a2a3=a=8,所以a2=2.从而解得a1=1,a3=4或a1=4,a3=1.当a1=1时,q=2;当a1=4时,q=.故an=2n-1或an=23-n.法二:由等比数列的定义,知a2=a1q,a3=a1q2.代入已知,得即即将a1=代入①,得2q2-5q+2=0,所以q=2或q=.由②得或故an=2n-1或an=23-n.10.三个互不相等的数成等差数列,如果适当排列这三个数,又可成为等比数列,这三个数的和为6,求这三个数.[解]由已知,可设这三个数为a-d,a,a+d,则a-d+a+a+d=6,∴a=2,这三个数可表示为2-d,2,2+d,①若2-d为等比中项,则有(2-d)2=2(2+d),解得d=6或d=0(舍去).此时三个数为-4,2,8.②若2+d是等比中项,则有(2+d)2=2(2-d),解得d=-6或d=0(舍去).此时三个数为8,2,-4.③若2为等比中项,则22=(2+d)(2-d),∴d=0(舍去).综上可求得此三数为-4,2,8或8,2,-4.211.已知各项不为0的等差数列{an}满足a4-2a+3a8=0,数列{bn}是等比数列且b7=a7,则b2b8b11等于()A.1B.2C.4D.8D[由已知,a4-2a+3a8=0,即4a7-2a=0,又各项不为0,a7=2,所以b7=2,则b2b8b11=b=8.]12.(多选题)在等比数列{an}中,a7a11=6,a4+a14=5,则=()A.B.1C.D.2AC[因为a7a11=a4a14=6,又a4+a14=5,所以或所以=q10=,所以=或=.]13.(一题两空)等比数列{an}是递减数列,前n项的积为Tn,若T13=4T9,则a10a11a12a13=________,a8a15=________.42[∵T13=4T9,∴a1a2…a9a10a11a12a13=4a1a2…a9.∴a10a11a12a13=4.又∵a10·a13=a11·a12=a8·a15,∴(a8·a15)2=4.∴a8a15=±2.又∵{an}为递减数列,∴q>0.∴a8a15=2.]14.设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2,…),若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则6q=________.-9[由题意知,数列{bn}有连续四项在集合{-53,-23,19,37,82}中,说明{an}有连续四项在集合{-54,-24,18,36,81}中,由于{an}中连续四项至少有一项为负,∴q<0.又∵|q|>1,∴{an}的连续四项为-24,36,-54,81.∴q==-,∴6q=-9.]15.在等差数列{an}中,公差d≠0,a2是a1与a4的等比中项.已知数列a1,a3,ak1,ak2,…,akn,…成等比数列,求数列{kn}的通项kn.[解]依题意得an=a1+(n-1)d,a=a1a4,3∴(a1+d)2=a1(a1+3d),整理得d2=a1d,∵d≠0,∴d=a1,得an=nd.∴由已知得d,3d,k1d,k2d,…,knd,…是等比数列.又d≠0,∴数列1,3,k1,k2,…,kn,…也是等比数列,首项为1,公比为q==3,由此得k1=9.等比数列{kn}的首项k1=9,公比q=3,∴kn=9×3n-1=3n+1(n=1,2,3,…),即得到数列{kn}的通项为kn=3n+1.4