2016-2017学年湖北省黄冈市高二(下)第二次月考数学试卷(文科)一.选择题:(本大题共12小题,每小题5分,满分60分;每小题给出的四个选项中只有一项是符合题目要求的.)1.已知集合A={x|y=lg(x﹣3)},B={x|x≤5},则A∪B=()A.{x|3<x≤5}B.{x|x≥5}C.{x|x<3}D.R2.设i为虚数单位,复数为纯虚数,则实数a的值为()A.﹣1B.1C.﹣2D.23.已知△ABC中,,则cosA=()A.B.C.D.4.设x∈R,则“|x﹣1|<2”是“x2﹣4x﹣5<0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,那么表中m值为()x3456y2.5m44.5A.4B.3.15C.4.5D.36.设函数g(x)=x(x2﹣1),则g(x)在区间(0,1)上的最小值为()A.﹣1B.0C.﹣D.7.已知函数y=f(x)(x∈R)且在[0,+∞)上是增函数,g(x)=f(|x|),若g(2x﹣1)<g(2),则x的取值范围是()A.(﹣,)B.(﹣∞,)C.(,+∞)D.(﹣∞,)∪(,+∞)18.设f(x)是一个三次函数,f′(x)为其导函数,如图所示的是y=x•f′(x)的图象的一部分,则f(x)的极大值与极小值分别是()A.f(1)与f(﹣1)B.f(﹣1)与f(1)C.f(﹣2)与f(2)D.f(2)与f(﹣2)9.函数f(x)=loga|x|+1(0<a<1)的图象大致为()A.B.C.D.10.曲线C的参数方程为(α为参数),M是曲线C上的动点,若曲线T极坐标方程2ρsinθ+ρcosθ=20,则点M到T的距离的最大值()A.B.C.D.11.将函数f(x)=3sin(2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,),则φ的值不可能是()A.B.πC.D.12.已知函数f(x)=﹣5,若对任意的,都有f(x1)﹣g(x2)≥2成立,则a的取值范围是()A.(0,+∞)B.[1,+∞)C.(﹣∞,0)D.(﹣∞,﹣1]2二.填空题:(本大题共4小题,每小题5分,满分20分.)13.若sin(﹣x)=﹣,且π<x<2π,则x等于.14.若f(x)=,则f(x)的定义域为.15.已知函数f(x)=,则f(f(2018))=.16.已知函数,若关于x的方程f(x)﹣k=0有唯一一个实数根,则实数k的取值范围是.三.解答题:(本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤)17.已知抛物线y=ax2+bx+c通过点(1,1),且在点(2,﹣1)处与直线y=x﹣3相切,求a、b、c的值.18.设函数f(x)=﹣+2ax2﹣3a2x+b(常数a,b满足0<a<1,b∈R).(1)求函数f(x)的单调区间和极值;(2)若对任意的x∈[a+1,a+2],不等式|f'(x)|≤a恒成立,求a的取值范围.19.高三学生小罗利用暑假参加社会实践,为了帮助贸易公司的购物网站优化今年国庆节期间的营销策略,他对去年10月1日当天在该网站消费且消费金额不超过1000元的1000名(女性800名,男性200名)网购者,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表(消费金额单位:元):消费金额(0,200)[200,400)[400,600)[600,800)[800,1000)人数5101547x女性消费情况:男性消费情况:3消费金额(0,200)[200,400)[400,600)[600,800)[800,1000)人数2310y2(Ⅰ)现从抽取的100名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的这两名网购者恰好是一男一女的概率;(Ⅱ)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写右面2×2列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’与性别有关?”女性男性总计网购达人非网购达人总计P(k2≥k0)0.100.050.0250.0100.005k02.7063.8415.0246.6357.879附:(,其中n=a+b+c+d)20.2008年奥运会在中国举行,某商场预计2008年从1日起前x个月,顾客对某种奥运商品的需求总量p(x)件与月份x的近似关系是且x≤12),该商品的进价q(x)元与月份x的近似关系是q(x)=150+2x,(x∈N...