电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学考点回归总复习 第七讲函数的奇偶性与周期性课件VIP免费

高考数学考点回归总复习 第七讲函数的奇偶性与周期性课件_第1页
1/49
高考数学考点回归总复习 第七讲函数的奇偶性与周期性课件_第2页
2/49
高考数学考点回归总复习 第七讲函数的奇偶性与周期性课件_第3页
3/49
第七讲函数的奇偶性与周期性回归课本1.函数的奇偶性(1)函数的奇偶性的定义奇偶性定义图象特点偶函数如果函数f(x)的定义域内任意一个x都有f(-x)=f(x),那么函数f(x)是偶函数.关于y轴对称奇函数如果函数f(x)的定义域内任意一个x都有f(-x)=-f(x),那么函数f(x)是奇函数.关于原点对称(2)对函数奇偶性的理解①函数奇偶性的判断a.首先看函数的定义域,若函数的定义域不关于原点对称,则函数既不是奇函数,也不是偶函数.b.若函数的定义域关于原点对称,再看f(-x)与f(x)的关系.若f(-x)=-f(x),则函数是奇函数;若f(-x)=f(x),则函数是偶函数;若f(-x)=f(x)且f(-x)=-f(x),则f(x)既是奇函数又是偶函数;若f(-x)≠f(x)且f(-x)≠-f(x),则f(x)既不是奇函数,也不是偶函数.②在公共定义域内a.两奇函数的积与商(分母不为零时)为偶函数,两奇函数的和是奇函数.b.两偶函数的和、积与商(分母不为零)为偶函数.③奇函数在对称区间上单调性一致,偶函数在对称区间上单调性相反.2.函数的周期性(1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)叫做周期函数,非零常数T叫f(x)的周期.如果所有的周期中存在一个最小的正数,那么这个最小正数就叫f(x)的最小正周期.(2)周期函数不一定有最小正周期,若T≠0是f(x)的周期,则kT(kZ)(k≠0)∈也一定是f(x)的周期,周期函数的定义域无上、下界.考点陪练21.fxaxbxa1,2a,ab11..3311..22ABCD已知是定义在上的偶函数那么的值是()答案:B2.(2010·新课标全国)设偶函数f(x)满足f(x)=2x-4(x≥0),则{x|f(x-2)>0}=()A.{x|x<-2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<-2或x>2}解析:已知函数f(x)是偶函数,所以当x<0时,解析式为f(x)=2-x-4(x<0),所以当x-2<0时,f(x-2)=2-(x-2)-4,要使f(x-2)>0,解得x<0;当x-2≥0时,f(x-2)=2x-2-4,要使f(x-2)=2x-2-4>0,解得x>4,综上{x|f(x-2)>0}={x|x<0或x>4},故选B.答案:B3.(2010·山东)设f(x)为定义在R上的奇函数.当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=()A.-3B.-1C.1D.3解析:因为f(x)为定义在R上的奇函数,所以有f(0)=20+2×0+b=0,解得b=-1,所以当x≥0时,f(x)=2x+2x-1,所以f(-1)=-f(1)=-(21+2×1-1)=-3,故选A.答案:A4.(2010·广东)若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则()A.f(x)与g(x)均为偶函数B.f(x)为偶函数,g(x)为奇函数C.f(x)与g(x)均为奇函数D.f(x)为奇函数,g(x)为偶函数解析:由f(-x)=3-x+3x=f(x)可知f(x)为偶函数,由g(-x)=3-x-3x=-(3x-3-x)=-g(x)可知g(x)为奇函数.答案:B5.gx,fx___23,(0)(),(___)__.0xxfxx如果函数是奇函数则答案:2x+3类型一函数奇偶性的判断解题准备:判断函数奇偶性的一般方法(1)首先确定函数的定义域,看是否是关于原点对称的.否则,既不是奇函数也不是偶函数.(2)若定义域关于原点对称,则可用下述方法进行判断:①定义判断:f(-x)=f(x)⇔f(x)为偶函数,f(-x)=-f(x)⇔f(x)为奇函数.②等价形式判断:f(-x)-f(x)=0⇔f(x)为偶函数.f(-x)+f(x)=0⇔f(x)为奇函数.(3)对于分段函数的奇偶性的判断应分段进行.,()():11()(();,()).fxfxfxfxfxfx或等价于则为偶函数则为奇函数21,.1fxxx1x1,4;2fxx1111112(1)(0)x1,1;3fx.(1)(0a0,a1x);4fxxxaxxxxxx【典例】判断下列函数的奇偶性并说明理由[分析]判断函数的奇偶性,首先要检验其定义域是否关于原点对称,若关于原点对称,再严格按照奇偶性的定义进行推理判断.222[]1fxxx1,x1,4,,fx.2fxx1fx1x1,.fxx1,1111(1)(1)(1)11(1)(1)(1)(1)111(1)(1)(),111fxxxxxxxxxxxxxxxxxxxfxxx解由于的定义域不是关于原点对称的区间因此是非奇非偶函数已知的定义域为其定义域关于原点对称又即xfx,fx.是偶函数11()12111(1)11121212113fxxR,x0,,f1111(),1xfx,f2x12.xxxxxxxxfxaaaaaafxaa...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学考点回归总复习 第七讲函数的奇偶性与周期性课件

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部