2.3.1变量之间的相关关系.一、新课准备:1.“√”请同学们如实填写下表(在空格中打)好中差你的数学成绩你的物理成绩我们可以发现自己的数学成绩和物理成绩存在某种关系。(似乎就是数学好的,物理也好;数学差的,物理也差,但又不全对。)物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法。数学成绩的高低对物理成绩的高低是有一定影响的。但决非唯一因素,还有其它因素,如是否喜欢物理,用在物理学习上的时间等等。(总结:不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少。但这两个变量是有一定关系的,它们之间是一种不确定性的关系。如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义。)现实生活中还存在许多相关关系的问题:商品销售与广告、粮食生产与施肥量、人体的脂肪量与年龄等等的相关关系.如何判断两变量之间的相关关系•1、通过收集大量的数据,进行统计,对数据分析,找出其中的规律,对其相关关系作出一定判断..2、由于变量之间相关关系的广泛性和不确定性,所以样本数据应较大,和有代表性.才能对它们之间的关系作出正确的判断.相关关系的概念两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。相关关系是一种非确定性关系。(分析:两个变量→自变量取值一定→因变量带有随机性→相关关系)巩固练习P851,2题。2.3.2两变量的线性相关探究:.年龄脂肪239.52717.83921.24125.9454927.526.35028.25329.65430.25631.45730.8年龄脂肪5833.56035.26134.6如上的一组数据,你能分析人体的脂肪含量与年龄之间有怎样的关系吗?从上表发现,对某个人不一定有此规律,但对很多个体放在一起,就体现出“人体脂肪随年龄增长而增加”这一规律.而表中各年龄对应的脂肪数是这个年龄人群的样本平均数.我们也可以对它们作统计图、表,对这两个变量有一个直观上的印象和判断.下面我们以年龄为横轴,脂肪含量为纵轴建立直角坐标系,作出各个点,称该图为散点图。如图:O20253035404550556065年龄脂肪含量510152025303540从刚才的散点图发现:年龄越大,体内脂肪含量越高,点的位置散布在从左下角到右上角的区域。称它们成正相关。但有的两个变量的相关,如下图所示:如高原含氧量与海拔高度的相关关系,海平面以上,海拔高度越高,含氧量越少。作出散点图发现,它们散布在从左上角到右下角的区域内。又如汽车的载重和汽车每消耗1升汽油所行使的平均路程,称它们成负相关.O我们再观察它的图像发现这些点大致分布在一条直线附近,像这样,如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线,该方程叫回归方程。那么,我们该怎样来求出这个回归方程?请同学们展开讨论,能得出哪些具体的方案?20253035404550556065年龄脂肪含量0510152025303540..方案1、先画出一条直线,测量出各点与它的距离,再移动直线,到达一个使距离的和最小时,测出它的斜率和截距,得回归方程。20253035404550556065年龄脂肪含量0510152025303540如图:.方案2、在图中选两点作直线,使直线两侧的点的个数基本相同。20253035404550556065年龄脂肪含量0510152025303540方案3、如果多取几对点,确定多条直线,再求出这些直线的斜率和截距的平均值作为回归直线的斜率和截距。而得回归方程。如图我们还可以找到更多的方法,但这些方法都可行吗?科学吗?准确吗?怎样的方法是最好的?20253035404550556065年龄脂肪含量0510152025303540我们上面给出的几种方案可靠性都不是很强,人们经过长期的实践与研究,已经找到了计算回归方程的斜率与截距的一般公式:xbyaxnxyxnxxxyyxxbniiniiiniiniiiy,)())((1221121以上公式的推导较复杂,故不作推导,但它的原理较为简单:即各点到该直线的距离的平方和最小,这一方法叫最小二乘法。(参看如书P89)练习:书P94A组1、3作业:P94A组2