三角恒等变形(1)sin)sincoscossin(tanαtanβtan(αβ)=1tanαtanβcos)coscossinsin(复习1222coscos2212sincoscossinsin22222sincoscos2122tantantan二倍角公式:引申:公式变形:2)cos(sin2sin12cos22cos12sin22cos122cos1cos222cos1sin2升幂降角公式降幂升角公式1cos20cos40cos60cos80()2sin10sin30sin50sin70()116答案:化简:11sin(2)coscos2cos4cos22sinnnn.练习总结引申:公式变形:1cossin221coscos221costan21cos,,半角公式:sincos1cos1sin2tansin1costan21cossin求证:sinsin2cossin222tan21coscoscos2cos222证法一:221cos(1cos)(1cos)sintan()21cos(1cos)(1cos)1cos证法二:sin|sin||tan|||21cos1cos2sin2sincos2tancos2222sin1cos02又由知与tan同号,且+sintan21cos1costan2sin同理∴.例122cossin132sin202522sin()4已知且,求的值。2sin()1cossin14tan()42sin()2sin()44解法一:原式1cos(2)1sin212cos22sin(2)21cossin1cossin1tan1cossin1tan22sin()4解法二:原式.练习11sincos[sin()sin()]22sinsin2sincos22求证:例211sin6cos24sin78cos48432cos2tan522153|cos|3sin5223774cos()45124sin2(1tan)1tan、化简:;已知,且,求的值;已知,且,求的值;已知,且,求的值。练习3cossin54sin,sicn()os5已知求的值。,0,0,cos(变式:已知sinsinsin且coscoscos求)的值。例3练习22sin()sin()35tantan1、已知,,求的值。2tan1sin(2)3sintan().、已知,,求37sin3sin(),22tan5tan22、已知求证:?222?,222注意角之间的联系:练习413sin5cos9,13cos5sin15,sin()、若求练习2550cos()6331323sin(),sin()35、已知,,求的值223sin2sin13sin22sin202已知,且,为锐角,试求+的值。223sin2sin123sincos23sin22sin203sincossin2提示:例4333sin3coscos3sinsin44求证:22sin3coscoscos3sinsin1cos21cos2sin3coscos3sin2211(sin3coscos3sin)cos2(sin3coscos3sin)2211sin4cos2sin2223sin44=右边.证明:左边所以,原式成立。例5266(tan)tan2(2)12tancos2cos2cos()223cossin88sin204(cot5tan5)1cos20cossin2(cossin)51sin1cos1sincosfxxf1、设,求;、已知,求;、求;、求值;、求证:.练习