专题训练7数列基础过关1.在等比数列{an}中,a1=8,a2=64,则公比q为()A.2B.3C.4D.82.若等差数列{an}的前三项和S3=9,则a2等于()A.3B.4C.5D.63.数列-3,7,-11,15,…的通项公式可能是()A.an=4n-7B.an=-1n4n+1C.an=-1n4n-1D.an=-1n+14n-14.在等差数列{an}中,a1=1,a3+a5=14,其前n项和Sn=100,则n等于()A.9B.10C.11D.12DACB5.已知{an}是等差数列,a10=10,其前10项和S10=70,则其公差d=()A.-23B.-13C.13D.236.已知数列{an}的前n项和Sn=n2-9n,第k项满足5
1020,那么n的最小值是()A.7B.8C.9D.1016.已知数列的通项an=-5n+2,则其前n项和Sn=________.D提示:通项1+2+22+…+2n-1=1-2n1-2=2n-1,∴Sn=21-2n1-2-n=2n+1-n-2.n-1-5n217.已知等差数列{an}的前n项和为Sn,若S12=21,则a2+a5+a8+a11=________.18.设{an}为公比q>1的等比数列,若a2011和a2012是方程4x2-8x+3=0的两根,则a2013+a2014=________.7提示:a2+a11=a5+a8=a1+a12=72.18解析:方程4x2-8x+3=0的两根为x1=12,x2=32.由q>1可得a2011=12,a2012=32,∴q=3,∴a2013+a2014=a2011+a2012·q2=2×9=18.19.在等比数列{an}中,已知a1=2,a4=16.(1)求数列{an}的通项公式;(2)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及前n项的和Sn.解析(1)设{an}的公比为q,由已知得16=2q3,解得q=2.(2)由(1)得a2=8,a5=32,则b3=8,b5=32,设{bn}的公差为d,则有b1+2d=8,b1+4d=32,解得b1=-16,d=12,从而bn=-16+12(n-1)=12n-28,∴Sn=n(-16+12n-28)2=6n2-22n.20.在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*.(1)求证:数列an-n是等比数列;(2)求数列{an}的前n项和Sn.解析(1)由an+1=4an-3n+1可得an+1-n+1=4an-3n+1-n+1=4an-4n=4an-n,∴an-n是公比为4的等比数列.(2)由(1)可得an-n=a1-1·4n-1=4n-1,∴an=4n-1+n,∴Sn=1-4n1-4+nn+12=4n-13+nn+12.冲刺A级21.等差数列{an}的前n项和为Sn,已知am-1+am+1-am2=0,S2m-1=38,则m=()A.38B.20C.10D.922.已知等比数列{an}满足an>0,n=1,2,…,且a5·a2n-5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n-1=()A.n(2n-1)B.(n+1)2C.n2D.(n-1)2C解析: am-1+am+1=2am,∴am=2(am=0舍去),∴由S2m-1=2m-1am=38可得2m-1=19,∴m=10.C解析: a5·a2n-5=an2,∴an=2n,∴原式=log2()an2n=n2.23.已知数列{an}对于任意p,q∈N*,有ap+aq=ap+q.若a1=19,则a36=________.4解析:由已知可得an+a1=an+1,∴{}an是公差d=a1=19的等差数列,∴a36=4.24.将全体正整数排成一个三角形数阵:12345678910……按照以上排列的规律...