敏于思,慎于行指数、对数不等式的解法指数、对数不等式的解法不等式的解法你知道吗?1.如何解以下几种无理不等式?2.函数和的单调性.(a>0,且a≠1)3.指数和对数运算的性质及法则.)()(xgxf)()(xgxf)()(xgxfgogogoxayxyaloggo)()(xgxf可同解变形为0)(xf0)(xg)()(xgxf以上不等式组中的去掉后和原不等式是否同解?0)(xf)()(xgxf可同解变形为0)(xg0)(xf)()(2xgxf以上不等式组中的去掉后和原不等式是否同解?0)(xf)()(xgxf可同解变形为0)(xg0)(xg0)(xf)()(2xgxf0)(xf或按g(x)分类以上不等式组中的去掉后和原不等式是否同解?0)(xf你知道吗?指数的性质:指数的运算法则:)0(10aayxyxaaayxyxaaaxyyxaa)(你知道吗?MNNMaaalogloglogNMNMaaalogloglogNnNanalog)(logNnNaanlog1logNnNaanlog1logNaNalog01loga1logaa零和负数没有对数对数的性质:对数的运算法则:以上公式中,底数大于0,且不为1,分母不为0.请注意记忆NnNNnnanaalogloglogn的取值应使底数大于0,且不等于1;真数大于0。NnNaanlog1log学习目标:)()(xgxfaa)(log)(logxgxfaa02CaBaAxx0loglog2CxBxAaa初级目标:掌握可化为及可化为(a>0,a≠1)型的不等式的解法;中级目标:掌握可化为及型的不等式的解法;高级目标:初步掌握综合有根式、指数、对数的不等式的解法;用分类讨论思想解指数、对数不等式;(依时间而定)怎么解?•例1:解不等式)1(332)21(22xxx)1(32x)32(2)21(xx或解不等式)1(332)21(22xxx)1(332222xxx)1(3322xxx062xx23xx23xx解:原不等式可化为(1)因为以2为底的指数函数单调递增,所以(1)式成立当且仅当整理得:解这个不等式得:原不等式的解集是怎么解?)102(log)43(log31231xxx例2:解不等式)102(log)43(log31231xxx0102x102432xxx0432xx通过取交集,得原不等式的解集为,12xx或74x解:原不等式等价于不等式组解之得数轴例2:72x5x或1x4x)102(log)43(log31231xxx0102x102432xxx0432xx通过取交集,得原不等式的解集为解:原不等式等价于不等式组解之得返回例2:72x5x或1x4x0-27-14-51x初级目标小结:不同底,化同底;利用函数单调性;注意真数大于零。)()(xgxfaa)(log)(logxgxfaa及的不等式的解法可化为:初级目标小结:)()(xgxfaa)(log)(logxgxfaa及的不等式的解法可化为:)()(xgxfaa10a当时1a当时)()(xgxfaa)()(xgxf)()(xgxf)(log)(logxgxfaa10a当时1a当时)(log)(logxgxfaa0)(xf0)(xg)()(xgxf0)(xf0)(xg)()(xgxf想一想,怎么解?•例3:解不等式224252562xxx224x2222582)0(56442ttt21)2(5x1322x82解法1解法2)0(52828ttt所以原不等式的解集为:224252562xxtx2516t4t2242x2x)0(t2xx解法1:原不等式可化为:令得:25644tt解得或(舍去)故得xx2284225222化简得:262)2(5222xx所以原不等式的解集为:224252562xx2113)2(525622xxtx12532t8t31282x31x2x)0(t2xx解法2:原不等式可化为:令得:252568tt解得或(舍去)故得∴想一想,你能不能解出来?例4:解不等式:021log)5(log22221xx2251logx221logx41log211log21哪一种好?为什么?公式或想一想,你能不能解出来?例4:解不等式:021log)5(log22221xxNnNNnnanaalogloglog返回解:原不等式等价于:转下页021log)5(log22221xx041loglog)5(log21221221xx1log]41)5[(log212221xx0)5(22xx1)5(4122xx等价吗?例4:0)5(22xx1)5(4122xx∴)5,2()1,0()0,1()2,5(x50x05x或2x2x11x或或052x且0x045)(222xx50x05x或42...