电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高三数学一轮复习 13.65 数列的极限课件 理 大纲人教版 课件VIP免费

高三数学一轮复习 13.65 数列的极限课件 理 大纲人教版 课件_第1页
1/22
高三数学一轮复习 13.65 数列的极限课件 理 大纲人教版 课件_第2页
2/22
高三数学一轮复习 13.65 数列的极限课件 理 大纲人教版 课件_第3页
3/22
了解数列极限的概念,掌握极限的四则运算法则,会求某些数列的极限第65课时数列的极限1.数列极限的定义:一般地,如果当项数n无限增大时,无穷数列{an}的项an无限趋近于某个常数a(即|an-a|无限趋近于0),那么就说数列{an}以a为极限,或者说a是数列{an}的极限.记作,读作“当n趋向于无穷大时,an的极限等于a”.2.几个重要极限(1)(2)(C是常数);(3)无穷等比数列{qn}(|q|<1)的极限是0,即(|q|<1).3.数列极限的运算法则如果,那么=A+B;lim(an-bn)=A-B;lim(an·bn)=A·B;lim=(B≠0).1.lim等于()A.2B.1C.D.0解析:答案:C2.若数列{an}满足:a1=,且对任意正整数m,n都有am+n=am·an,则lim(a1+a2+…+an)等于()A.B.C.D.2解析:令m=1,由am+n=aman,得an+1=a1an,则,lim(a1+a2+…+an)=答案:A3.已知p和q是两个不相等的正整数,且q≥2,则lim等于()A.0B.1C.D.解析:答案:C4.lim=________.解析:lim==lim==-1.答案:-11.这类题型主要是应用数列极限的定义和极限的四则运算法则求某数列的极限,比较简单的数列可以从其各项变化趋势观察出它们的极限,比较复杂的数列可以通过恒等变形、转化变换等方法,运用极限的四则运算法则将其极限求出.2.对于无穷等比数列{an},若公比为q,前n项和为Sn,且|q|<1,则S=limSn=.【例1】求下列数列的极限:(1)lim(2)lim(3)lim;(4)limα∈[0,].解答:(1)lim=(2)(3)(4)当α=时,原式=;当0≤α<时,则有0≤tanα<1,∴原式==3;当<α≤时,则有0≤cotα<1,∴原式==2.两个数列和差积商的极限等于其极限的和差积商,这一结论的前题条件是两个数列的极限都存在,而这一结论也可以推广到任意有限个.【例2】(1)已知lim(an+bn)=4,lim(an-bn)=2,求liman,limbn;(2)已知lim(3n+2)an=1,求limnan.解答:(1)liman==lim(an+bn)+lim(an-bn)=×4+×2=3,∴limbn=lim[(an+bn)-an]=lim(an+bn)-liman=4-3=1.(2)limnan=lim[·(3n+2)an]=limlim(3n+2)an=变式2.若lim(3an+4bn)=8,lim(6an-bn)=1,则lim(3an+bn)为()A.1B.2C.3D.4解析:设3an+bn=x(3an+4bn)+y(6an-bn),由可解得∴lim(3an+bn)=lim[(3an+4bn)+(6an-bn)]=[lim(3an+4bn)+lim(6an-bn)]=3.答案:C数列极限是整个微积分内容的基础.积分的意义是:分割、求和、取极限,而极限就可达到“以直代曲”,用有限的过程解决无限的求和问题.【例3】下图为函数f(x)=x2在[0,1)上的图象,将[0,1)n等分,分别以为宽、f()为长作矩形(i=1,2,…,n-1)(1)求上述n-1个矩形面积的和S(n);(2)求limS(n).解答:(1)S(n)==(2)limS(n)=变式3.如下图为半径为R的半球的轴截面把垂直于底面的半径OAn等分,经过这n-1个分点,用一组平行于底面的平面把半球切割成n层,则以上述小圆为底面的圆柱的体积之和Vn为半球体积的近似值.(1)求Vn;(2)求limVn.解答:(1)Vn==πR3[(n-1)n2-(12+22+…+(n-1)2)]=(2)limVn=【方法规律】1.可通过对整式、分式或根式的变形,如利用“分子分母同除”和“根式有理化”等手段转化为能够使用四则运算法则的情况,根据四则运算法则进行运算.2.使用四则运算法则中的首要条件是{an}与{bn}两个数列的极限均存在,要先判断再使用,如例2四则运算法则中的数列,只适用于有限个数列的和、差、积、商.应该先求“和”“积”再求极限.3.对于分子分母都是n的多项式的分式数列的运算结果可进行归纳总结;对于无穷等比数列各项和应利用公式计算,简化极限的运算过程.4.利用数列极限,可解决无限循环小数化分子,求几何图形和几何体的面积和体积等问题.(本题满分4分)如下图,连结△ABC的各边中点得到一个新的△A1B1C1,又连结△A1B1C1的各边中点得到△A2B2C2,如此无限继续下去,得到一系列三角形:△ABC,△A1B1C1,△A2B2C2,…,这一系列三角形趋向于一个点M.已知A(0,0),B(3,0),C(2,2),则点M的坐标是________.【答题模板】解析:设An(xn,yn),n=1,2,3,…,则x1=,x2=,xn+1=,n≥2.即xn+1+xn=xn+xn-1,∴为常数列.xn+1+xn=x2+x1=设xn+1-λ=-(xn...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高三数学一轮复习 13.65 数列的极限课件 理 大纲人教版 课件

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部