第4讲直线与圆、圆与圆的位置关系知识梳理1.直线与圆的位置关系设直线l:Ax+By+C=0(A2+B2≠0),圆:(x-a)2+(y-b)2=r2(r>0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.方法位置关系几何法代数法相交drΔ0相切drΔ0相离drΔ0<=>>=<2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).方法位置关系几何法:圆心距d与r1,r2的关系代数法:两圆方程联立组成方程组的解的情况相离外切一组实数解相交内切d=|r1-r2|(r1≠r2)一组实数解内含0≤d<|r1-r2|(r1≠r2)无解d>r1+r2无解d=r1+r2|r1-r2|<d<r1+r2两组不同的实数解辨析感悟1.对直线与圆位置关系的理解(1)直线y=kx+1与圆x2+y2=1恒有公共点.(√)(2)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.(×)(3)(2013·浙江卷改编)直线y=2x+3被圆x2+y2-6x-8y=0所截得的弦长等于25.(×)2.对圆与圆位置关系的理解(4)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.(×)(5)如果两圆的圆心距小于两圆的半径之和,则两圆相交.(×)3.关于圆的切线与公共弦(6)过圆O:x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y=r2.(√)(7)两个相交圆的方程相减消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.(√)(8)圆C1:x2+y2+2x+2y-2=0与圆C2:x2+y2-4x-2y+1=0的公切线有且仅有2条.(√)[感悟·提升]1.两个防范一是应用圆的性质求圆的弦长,注意弦长的一半、弦心距和圆的半径构成一个直角三角形,有的同学往往漏掉了2倍,如(3);二是在判断两圆位置关系时,考虑要全面,防止漏解,如(4)、(5),(4)应为两圆外切与内切,(5)应为两圆相交、内切、内含.2.两个重要结论一是两圆的位置关系与公切线的条数:①内含时:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.二是当两圆相交时,把两圆方程(x2,y2项系数相同)相减便可得两圆公共弦所在直线的方程.考点一直线与圆的位置关系【例1】(1)(2013·陕西卷改编)已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是________.(2)(2012·江西卷)过直线x+y-22=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是________.解析(1)因为M(a,b)在圆O:x2+y2=1外,所以a2+b2>1,而圆心O到直线ax+by=1的距离d=|a·0+b·0-1|a2+b2=1a2+b2<1.故直线与圆O相交.(2)法一如图所示,|OP|=|OA|sin∠OPA=2,易得P为CD中点,故P(2,2).法二设P(x,y),由法一可得x2+y2=2,x+y-22=0⇒x=2,y=2,故P(2,2).答案(1)相交(2)(2,2)规律方法判断直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.【训练1】(1)“a=3”是“直线y=x+4与圆(x-a)2+(y-3)2=8相切”的________条件.(2)(2014·郑州模拟)直线y=-33x+m与圆x2+y2=1在第一象限内有两个不同的交点,则m取值范围是________.解析(1)若直线y=x+4与圆(x-a)2+(y-3)2=8相切,则有|a-3+4|2=22,即|a+1|=4,所以a=3或-5.但当a=3时,直线y=x+4与圆(x-a)2+(y-3)2=8一定相切,故“a=3”是“直线y=x+4与圆(x-a)2+(y-3)2=8相切”的充分不必要条件.(2)当直线经过点(0,1)时,直线与圆有两个不同的交点,此时m=1;当直线与圆相切时有圆心到直线的距离d=|m|1+332=1,解得m=233,所以要使直线与圆在第一象限内有两个不同的交点,则1<m<233.答案(1)充分不必要(2)1,233考点二圆与圆的位置关系【例2】已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+m=0.(1)m取何值时两圆外切?(2)m取何值时两圆内切?(3)求m=45时两圆的公共弦所在直线的方程和公共弦的长.解两圆的标准方程为:(x-1)2+(y-3)2=11,(x-5)2+(y-6)2=61-m,圆心分别为M(1,3),N(5,6),半径分别为11和61-m.(1)当两圆外切时,5-12+6-3...