电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学总复习 13.6 数系的扩充与复数的引入课件VIP免费

高考数学总复习 13.6 数系的扩充与复数的引入课件_第1页
1/42
高考数学总复习 13.6 数系的扩充与复数的引入课件_第2页
2/42
高考数学总复习 13.6 数系的扩充与复数的引入课件_第3页
3/42
§13.6数系的扩充与复数的引入要点梳理1.复数的有关概念(1)复数的概念形如a+bi(a,b∈R)的数叫做复数,其中a,b分别是它的和.若,则a+bi为实数,若,则a+bi为虚数,若,则a+bi为纯虚数.(2)复数相等:a+bi=c+di(a,b,c,d∈R).实部虚部b=0b≠0a=0且b≠0a=c且b=d基础知识自主学习(3)共轭复数:a+bi与c+di共轭(a,b,c,d∈R).(4)复平面建立直角坐标系来表示复数的平面,叫做复平面.叫做实轴,叫做虚轴.实轴上的点都表示;除原点外,虚轴上的点都表示;各象限内的点都表示.(5)复数的模向量的模r叫做复数z=a+bi的模,记作或,即|z|=|a+bi|=.a=c,b=-dx轴y轴实数纯虚数非纯虚数|z||a+bi|OZ22ba2.复数的几何意义(1)复数z=a+bi复平面内的点Z(a,b)(a,b∈R).(2)复数z=a+bi(a,b∈R).3.复数的运算(1)复数的加、减、乘、除运算法则设z1=a+bi,z2=c+di(a,b,c,d∈R),则①加法:z1+z2=(a+bi)+(c+di)=;②减法:z1-z2=(a+bi)-(c+di)=;③乘法:z1·z2=(a+bi)·(c+di)=;一一对应一一对应OZ平面向量(a+c)+(b+d)i(a-c)+(b-d)i(ac-bd)+(ad+bc)i④除法:=.(c+di≠0)(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z1、z2、z3∈C,有z1+z2=,(z1+z2)+z3=.i)i)((i)i)((ii21dcdcdcbadcbazz22i)()(dcadbcbdacz2+z1z1+(z2+z3)基础自测1.(2009·北京理,1)在复平面内,复数z=i(1+2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解析 z=i(1+2i)=-2+i,∴复数z在复平面内对应的点为Z(-2,1),该点位于第二象限.B2.下列命题正确的是()①(-i)2=-1;②i3=-i;③若a>b,则a+i>b+i;④若z∈C,则z2>0.A.①②B.①③C.②③D.①②④解析虚数不能比较大小,故③错误;若z=i,则z2=-1<0,故④错误.A3.(2008·浙江理,1)已知a是实数,是纯虚数,则a等于()A.1B.-1C.D.-解析因为该复数为纯虚数,所以a=1.i1ia2i)1(1i)1i)(1(i)1i)((i1iaaaai,2121aaA224.(2009·山东理,2)复数等于()A.1+2iB.1-2iC.2+iD.2-i解析i1i322i1ii23i)1i)(1(i)1i)(3(i1i3.i22i24C5.设为复数z的共轭复数,若复数z同时满足z-=2i,=iz,则z=.解析=iz,代入z-=2i,得z-iz=2i,z-1+izzz.i1i1i2zz题型一复数的概念及复数的几何意义已知复数试求实数a分别取什么值时,z分别为:(1)实数;(2)虚数;(3)纯虚数.根据复数z为实数、虚数及纯虚数的概念,利用它们的充要条件可分别求出相应的a值.解【例1】).i()65(16722Raaaaa2az思维启迪,167065,)1(222有意义则有为实数时当aaaaaz.,6,6,161为实数时即或zaaaaa题型分类深度剖析(2)当z为虚数时,∴a≠-1且a≠6且a≠±1.∴a≠±1且a≠6.∴当a∈(-∞,-1)∪(-1,1)∪(1,6)∪(6,+∞)时,z为虚数.(3)当z为纯虚数时,有∴不存在实数a使z为纯虚数.,167065222有意义则有aaaaa.661,0167065222aaaaaaaa且(1)本题考查复数集中各数集的分类,题中给出的复数采用的是标准的代数形式,否则应先化为代数形式,再依据概念求解.(2)若复数的对应点在某些曲线上,还可写成代数形式的一般表达式.如:对应点在直线x=1上,则z=1+bi(b∈R);对应点在直线y=x上,则z=a+ai(a∈R),在利用复数的代数形式解题时经常用到这一点.探究提高知能迁移1已知m∈R,复数-3)i,当m为何值时,(1)z∈R;(2)z是纯虚数;(3)z对应的点位于复平面第二象限;(4)z对应的点在直线x+y+3=0上.解(1)当z为实数时,则有m2+2m-3=0且m-1≠0解得m=-3,故当m=-3时,z∈R.(2)当z为纯虚数时,则有解得m=0或m=2.∴当m=0或m=2时,z为纯虚数.mmmmm2(1)2(2z.032,01)2(2mmmmm(3)当z对应的点位于复平面第二象限时,解得m<-3或1

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学总复习 13.6 数系的扩充与复数的引入课件

您可能关注的文档

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群