第7讲立体几何中的向量方法(一)第7讲立体几何中的向量方法(一)【2013年高考会这样考】1.通过线线、线面、面面关系考查空间向量的坐标运算.2.能用向量方法证明直线和平面位置关系的一些定理.3.利用空间向量求空间距离.【复习指导】本讲复习中要掌握空间向量的坐标表示和坐标运算,会找直线的方向向量和平面的法向量,并通过它们研究线面关系,会用向量法求空间距离.基础梳理1.空间向量的坐标表示及运算(1)数量积的坐标运算设a=(a1,a2,a3),b=(b1,b2,b3),则①a±b=(a1±b1,a2±b2,a3±b3);②λa=(λa1,λa2,λa3);③a·b=a1b1+a2b2+a3b3.(2)共线与垂直的坐标表示设a=(a1,a2,a3),b=(b1,b2,b3),则a∥b⇔a=λb⇔,,,a⊥b⇔⇔(a,b均为非零向量).a1=λb1a2=λb2a3=λb3(λ∈R)a·b=0a1b1+a2b2+a3b3=0(3)模、夹角和距离公式设a=(a1,a2,a3),b=(b1,b2,b3),则|a|=a·a=a21+a22+a23,cos〈a,b〉=a·b|a||b|=a1b1+a2b2+a3b3a21+a22+a23·b21+b22+b23.设A(a1,b1,c1),B(a2,b2,c2),则dAB=|AB→|=a2-a12+b2-b12+c2-c12.非零向量(2)用向量证明空间中的平行关系①设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔.②设直线l的方向向量为v,与平面α共面的两个不共线向量v1和v2,则l∥α或l⊂α⇔.③设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔.④设平面α和β的法向量分别为u1,u2,则α∥β⇔.v1∥v2存在两个实数x,y,使v=xv1+yv2v⊥uu1∥u2v1⊥v2v1·v2=0vu∥u1⊥u2u1·u2=0一种思想向量是既有大小又有方向的量,而用坐标表示向量是对共线向量定理、共面向量定理和空间向量基本定理的进一步深化和规范,是对向量大小和方向的量化:(1)以原点为起点的向量,其终点坐标即向量坐标;(2)向量坐标等于向量的终点坐标减去其起点坐标.得到向量坐标后,可通过向量的坐标运算解决平行、垂直等位置关系,计算空间成角和距离等问题.双基自测1.两不重合直线l1和l2的方向向量分别为v1=(1,0,-1),v2=(-2,0,2),则l1与l2的位置关系是().A.平行B.相交C.垂直D.不确定解析 v2=-2v1,∴v1∥v2.答案A2.已知平面α内有一个点M(1,-1,2),平面α的一个法向量是n=(6,-3,6),则下列点P中在平面α内的是().A.P(2,3,3)B.P(-2,0,1)C.P(-4,4,0)D.P(3,-3,4)解析 n=(6,-3,6)是平面α的法向量,∴n⊥MP→,在选项A中,MP→=(1,4,1),∴n·MP→=0.答案A3.(2011·唐山月考)已知点A,B,C∈平面α,点P∉α,则AP→·AB→=0,且AP→·AC→=0是AP→·BC→=0的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由AP→·AB→=0AP→·AC→=0,得AP→·(AB→-AC→)=0,即AP→·CB→=0,亦即AP→·BC→=0,反之,若AP→·BC→=0,则AP→·(AC→-AB→)=0⇒AP→·AB→=AP→·AC→,未必等于0.答案A4.(人教A版教材习题改编)已知a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2),则下列结论正确的是().A.a∥c,b∥cB.a∥b,a⊥cC.a∥c,a⊥bD.以上都不对解析 c=(-4,-6,2)=2(-2,-3,1)=2a,∴a∥c,又a·b=-2×2+(-3)×0+1×4=0,∴a⊥b.答案C考向一利用空间向量证明平行问题【例1】►如图所示,在正方体ABCDA1B1C1D1中,M、N分别是C1C、B1C1的中点.求证:MN∥平面A1BD.[审题视点]直接用线面平行定理不易证明,考虑用向量方法证明.证明法一如图所示,以D为原点,DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为1,则M0,1,12,N12,1,1,D(0,0,0),A1(1,0,1),B(1,1,0),于是MN→=12,0,12,设平面A1BD的法向量是n=(x,y,z).则n·DA1→=0,且n·DB→=0,得x+z=0,x+y=0.取x=1,得y=-1,z=-1.∴n=(1,-1,-1).又MN→·n=12,0,12·(1,-1,-1)=0,∴MN→⊥n,又MN⊄平面A1BD,∴MN∥平面A1BD.法二MN→=C1N→-C1M→=12C1B1→-12C1C→=12(D1A1→-D1D→)=12DA1→,∴...