电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第3章34基本不等式ab≤ab2课件 新人教A版必修5 课件VIP免费

高中数学 第3章34基本不等式ab≤ab2课件 新人教A版必修5 课件高中数学 第3章34基本不等式ab≤ab2课件 新人教A版必修5 课件高中数学 第3章34基本不等式ab≤ab2课件 新人教A版必修5 课件高中数学 第3章34基本不等式ab≤ab2课件 新人教A版必修5 课件高中数学 第3章34基本不等式ab≤ab2课件 新人教A版必修5 课件
3.4 基本不等式: ab≤a+b2 学习目标1. 理解基本不等式的内容及其证明.2 .能应用基本不等式解决求最值、证明不等式等问题.课堂互动讲练知能优化训练课前自主学案3.4 基 本不等式: ab≤a+b2 课前自主学案温故夯基1.两个正数 a 与 b 的等差中项为a+b2 ,正的等比中项为______ 2.由不等式性质可知,对任意 a,b∈R,(a-b)2 _______0,因此 a2+b2 _____2ab.什么时候等号成立呢?当且仅当_______时,取等号. ab. ≥a =b≥知新盖能1 .基本不等式(1) 重要不等式:对于任意实数 a 、 b ,都有 a2+ b2 ___2ab ,当且仅当 ______ 时,等号成立.(2) 基本不等式≥a = b① 形式:_____________ ab≤a+b2 ; ② 成立的前提条件: _______________ ;③ 等号成立的条件:当且仅当 ______ 时取等号;a > 0 , b >0a = b④对任意两个正实数 a、b,a+b2 叫做 a,b 的 ___________, ab叫做 a,b 的_____________ 算术平均数几何平均数.1 .基本不等式中的 a , b 可以是任意为正值的代数式吗?思考感悟提示:可以.2 .应用基本不等式求最值如果 x , y 都是正数,那么(1) 若积 xy 是定值 P ,那么当 ________ 时,和 x+ y 有最 ___ 值.(2) 若和 x + y 是定值 S ,那么当 _______ 时,积xy 有最 ___ 值.x = y小x = y大思考感悟2 .两个正数的积为定值,它们的和一定有最小值吗?提示:不一定.应用基本不等式求最值时还要求等号能取到.如: x+1x,x∈[2,+∞). 课堂互动讲练考点突破利用基本不等式证明不等式利用基本不等式证明不等式时,要充分利用基本不等式及其变形,同时注意利用基本不等式成立的条件.对要证明的不等式作适当变形,变出基本不等式的形式,然后利用基本不等式进行证明. 已知 a , b , c 为不全相等的正实数.求证 a2 + b2 + c2 > ab + bc + ca.例例 11【思路点拨】 构造基本不等式的条件→ 运用基本不等式证明 → 判断等号成立的条件→ 得到结论 【证明】 a > 0 , b > 0 , c > 0 ,∴a2 + b2≥2ab , b2 + c2≥2bc , c2 + a2≥2ca.∴2(a2 + b2 + c2)≥2(ab + bc + ca) ,即 a2 + b2 + c2≥ab + bc + ca.又 a,b,c 为不全等的正实数,故等号不成立. ∴a2+b2+c2>ab+bc+ca. 互动探究 本...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第3章34基本不等式ab≤ab2课件 新人教A版必修5 课件

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部