电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

初三数学一元二次方程讲义教案章节练习总练习VIP免费

初三数学一元二次方程讲义教案章节练习总练习_第1页
1/17
初三数学一元二次方程讲义教案章节练习总练习_第2页
2/17
初三数学一元二次方程讲义教案章节练习总练习_第3页
3/17
1一元二次方程的解法【要点综述】:一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是学生今后学习数学的基础。在没讲一元二次方程的解法之前,先说明一下它与一元一次方程区别。根据定义可知,只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程,一般式为:。一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程。因此判断一个方程是否为一元二次方程,要先看它是否为整式方程,若是,再对它进行整理,如能整理为的形式,那么这个方程就是一元二次方程。1、下列方程中哪些是一元二次方程?试说明理由。(1),(2),(3),(4)(5)3x2+x=20,(6)2x2-3xy+4=0,(7)x2-1x=4,(8)x2=0,(9)x2-3x+3=02、将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:1)2)(x-2)(x+3)=83)4)5)2x(x-1)=3(x-5)-46)3、化成一般形式是___________________________________,其中一次项系数是___________4、方程的一次项系数是___________,常数项是__________下面再讲一元二次方程的解法。解一元二次方程的基本思想方法是通过“降次”,将它化为两个一元一次方程。一元二次方程的基本解法有四种:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。如下表:方法适合方程类型注意事项直接开平方法≥0时有解,<0时无解。配方法二次项系数若不为1,必须先把系数化为1,再进行配方。公式法≥0时,方程有解;<0时,方程无解。先化为一般形式再用公式。因式分解法方程的一边为0,另一边分方程的一边必须是0,另一边可用任何方法2解成两个一次因式的积。分解因式。例1:用开平方法解下面的一元二次方程。(1);(2)(3);(4)分析:直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如的方程,其解为。通过观察不难发现第(1)、(2)两小题中的方程显然用直接开平方法好做;第(3)题因方程左边可变为完全平方式,右边的121>0,所以此方程也可用直接开平方法解;第(4)小题,方程左边可利用平方差公式,然后把常数移到右边,即可利用直接开平方法进行解答了。解:(1)∴(注意不要丢解)由得,由得,∴原方程的解为:,(2)由得,由得∴原方程的解为:,3(3)∴,∴∴,∴原方程的解为:,(4)∴,即∴,∴,∴原方程的解为:,说明:解一元二次方程时,通常先把方程化为一般式,但如果不要求化为一般式,像本题要求用开平方法直接求解,就不必化成一般式。用开平方法直接求解,应注意方程两边同时开方时,只需在一边取正负号,还应注意不要丢解。【附训练典题】1、用直接开平方法解下列方程:(1);(2);(3);(4).(5)2225x;(6)21440y.(7)2(1)9x;(8)2(21)3x;(9)2(61)250x.(10)281(2)16x.(11)25(21)180y;(12)21(31)644x;4(13)26(2)1x;(14)2()(00)axcbba,≥例3:用配方法解下列一元二次方程。(1);(2)分析:用配方法解方程,应先将常数移到方程右边,再将二次项系数化为1,变为的形式。第(1)题可变为,然后在方程两边同时加上一次项系数的一半的平方,即:,方程左边构成一个完全平方式,右边是一个不小于0的常数,即:,接下去即可利用直接开平方法解答了。第(2)题在配方时应特别注意在方程两边同时加上一次项系数的一半的平方。解:(1)二次项系数化为1,移常数项得:,配方得:,即直接开平方得:∴,∴原方程的解为:,(2)二次项系数化为1,移常数项得:方程两边都加上一次项系数一半的平方得:即5直接开平方得:∴,∴原方程的解为:,说明:配方是一种基本的变形,解题中虽不常用,但作为一种基本方法要熟练掌握。配方时应按下面的步骤进行:先把二次项系数化为1,并把常数项移到一边;再在方程两边同时加上一次项系数一半的平方。最后变为完全平方式利用直接开平方法即可完成解题任务。【附训练典题】1.填空(1)28xx()(x)2.(2)223xx()=(x)2.(3)2byya()=(y)2.2.用适当的数(式)填空:23xx(x2);2xpx...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

初三数学一元二次方程讲义教案章节练习总练习

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部