分解质因数专题简析:一个自然数的因数中,为质数的因数叫做这个数的质因数。把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。例如:24=2×2×2×3,75=3×5×5。我们数学课本上介绍的分解质因数,是为求最大公约数和最小公倍数服务的其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。例题1把18个苹果平均分成若干份,每份大于1个,小于18个。一共有多少种不同的分法?分析先把18分解质因数:18=2×3×3,可以看出:18的约数是1、2、3、6、9、18,除去1和18,还有4个约数,所以,一共有4种不同的分法。练习一1,有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人。有哪几种分法?2,195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法3,甲数比乙数大9,两个数的积是792,求甲、乙两数分别是多少。4.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍。师傅的产品放在4只筐中,徒弟的产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80。徒弟制造的两筐零件各多少个?1、将下面八个数平均分成两组,使这两组数的乘积相等。2、5、14、24、27、55、56、99分析14=2×755=5×1124=2×2×2×356=2×2×2×727=3×3×399=3×3×11可以看出,这八个数中,共含有八个2,六个3,二个5,二个7和二个11。因为要把这八个数分成两组,且积相等,所以,每组数中应含有四个2,三个3,一个5,一个7和一个11。经排列为(5、99、24、14)和(55、27、56、2)。2、有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗。共有多少种分法?分析先把168分解质因数,168=2×2×2×3×7,由于每份不得少于10颗,也不能多于50颗,所以,每份有2×2×3=12颗,2×7=14颗,3×7=21颗,2×2×2×3=24颗,2×3×7=42颗,共有5种分法。3、王老师带领一班同学去植树,学生恰好分成4组。如果王老师和学生每人植树一样多,那么他们一共植了539棵。这个班有多少个学生?每人植树多少棵?分析根据每人植树棵数×人数=539棵,把539分解质因数。539=7×7×11,如果每人植7棵,这个班就有7×11-1=76人;如果每人植树11棵,这个班共有7×7-1=48人。4、下面的算式里,□里数字各不相同,求这四个数字的和。□□×□□=1995分析要使两个两位数的积等于1995,那么,这两个数的积应和1995有相同的质因数。1995=3×5×7×19,可以有35×57=1995和21×95=1995。因为要满足“数字各不相同”的条件,所以取21×95=1995,这四个数字的和是:2+1+9+5=17。5、三个素数的和是80,这三个数的积最大可以是多少?分析三个质数相加的和是偶数,必有一个质数是2。80-2=78,剩下两个质数的和是78,而且要使它的积最大,只能是41和37。因此,这三个质数是2、37和41。最大积是2×37×41=30346、长方形的面积是375平方米,已知它的宽比长少10米,长和宽的和是多少米?分析这道题如果用方程来解会比较麻烦,我们可以把375分解质因数看一看。375=5×5×5×3,因为5×5比5×3正好多10,所以,此长方形的长是5×5=25米,宽是5×3=15米,它们的和是40米。7、某班同学在班主任老师带领下去种树,学生恰好平均分成三组,如果师生每人种树一样多,一共种了1073棵,那么,平均每人种了多少棵?分析根据每人种树棵数×参加人数=1073,把1073分解质因数:1073=29×37,再根据学生恰好平均分成三组可知:参加种树的人数是3的倍数多1,由于只有37比3的倍数多1,所以有37人,平均每人种29棵。8、小明用2.16元买了一种画片若干张,如果每张画片的价钱便宜1分钱,那么他还能多买3张。小明买了多少张画片?分析根据题意可知:画片的单价×张数=216分,它们乘积的质因数和216的质因数相同。我们可以先把216分解质因数,再写成两数相乘的形式分析:216=2^3×3^3=8×27=9×24,显然,216分可以买8分的画片27张,也可以买9分的画片24张。所以,小明买了24张画片,符合题意。最大公因数专题简析:几个数公有的因数叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数。我们可以把自然数a、b的最公因数记作(a、b...