山东省实验中学 2019 届高三第二次诊断性考试数学试题(理科)说明:本试卷满分 150 分,分为第 I 卷(选择题)和第 II 卷(非选择题)两部分,第 I 卷为第 1 页至第 3 页,第 II 卷为第 3 页至第 5 页。试题答案请用 2B 铅笔或 0.5mm 签字笔涂到答题卡规定位置上,书写在试题上的答案无效。考试时间 120 分钟。第 I 卷(共 60 分)一、选择题(本题包括 12 小题,每小题 5 分,共 60 分。每小题只有一个选项符合题意)1.已知集合中的元素个数是A. 2 B. 3 C. 6 D. 8【答案】C【解析】【分析】先写出,再看的个数.【详解】由题得=,故 A∪B 的元素的个数为 6,故答案为:C【点睛】本题主要考查集合的并集运算,意在考查学生对该知识的掌握水平和分析推理能力.2.已知向量A. B. C. D. 2【答案】D【解析】【分析】由题得,解方程即得 m 的值.【详解】由题得故答案为:D【点睛】本题主要考查向量垂直的坐标表示,意在考查学生对该知识的掌握水平和分析推理能力.3.设满足约束条件的最大值是A. B. 0 C. 2 D. 3【答案】C【解析】【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的范围即可.【详解】x,y 满足约束条件的可行域如图:目标函数 z=x﹣y,经过可行域的点 B 时,目标函数取得最大值,由解得 B(2,0),目标函数的最大值为 2-0=2,故答案为:C【点睛】本题考查线性规划的简单应用,目标函数的最优解以及可行域的作法是解题的关键.4.已知等比数列中,A. B. ±4 C. 4 D. 16【答案】A【解析】【分析】由题得,解之即得解.【详解】由题得因为等比数列的奇数项同号,所以,故答案为:A【点睛】本题主要考查等比数列的性质和等比中项的运用,意在考查学生对这些知识的掌握水平和分析推理能力,本题要注意检验.5.“”是“指数函数单调递减”的A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】B【解析】【分析】先化简“指数函数单调递减”得,再利用充要条件的定义判断得解.【详解】因为“指数函数单调递减”,所以,所以“”是“指数函数单调递减”的必要非充分条件.故答案为:B【点睛】(1)本题主要考查指数函数的单调性的运用,考查充要条件的判断,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 利用集合法判断充要条件,首先分清条件和结论;然后化简每一个命题,建立命题和集合的对应关系.,;最后利用下面的结论判...