电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

2.4函数的零点的教学设计VIP免费

2.4函数的零点的教学设计_第1页
1/10
2.4函数的零点的教学设计_第2页
2/10
2.4函数的零点的教学设计_第3页
3/10
2 .4 函数的零点 【学情分析】 本节课从学生熟悉的二次函数与二次方程入手,借助对图象的观察获得二次函数的零点与一元二次方程根的关系,并将这种关系推广到了一般情形. 初学者大多不清楚为什么要研究函数的零点,因为在此之前他们都能用公式法直接求方程的根.所以,教学时可首先考虑解决这一问题.通过举例让学生知道,有许多方程都不能用公式法求解,为了研究更多方程的根,就有必要学习函数的零点.如果带着这样的疑问学习,必然会激发其求知欲,从而提高学习的效率.零点知识是陈述性知识,关键不在于学生提出这个概念。而是理解提出零点概念的作用,沟通函数与方程的关系。 【学习内容分析】 本节课是在学生学习了《一次函数和二次函数》的基础上,学习函数与方程的第一课时,通过对二次函数图象的绘制、分析,得到零点的概念及存在个数问题,从而进一步探索函数零点存在性的判定,这些活动就是想让学生在了解初等函数的基础上,利用计算机描绘函数的图象,通过对函数与方程的探究,对函数有进一步的认识,解决方程根的存在性问题,为下一节《用二分法求函数零点的近似值》做准备. 本节内容有函数零点概念、函数零点与相应方程根的关系、探究函数零点存在性。 函数零点是研究当函数的值为零时,相应的自变量 的取 值,反映在函数图象上,也就是函数图象与轴的交点横坐标。 由于函数的值为零亦即,其本身已是方程的形式,因而函数的零点必然与方程有着不可分割的联系,事实上,若方程有解,则函数存在零点,且方程的根就是相应函数的零点,也是函数图象与轴的交点横坐标.顺理成章的,方程的求解问题,可以转化为求函数零点的问题。这是函数与方程关系认识的第一步。 零点存在性定理,是函数在某区间上存在零点的充分不必要条件。如果函数 在区间[a,b]上的图象是一条不间断的曲线,并且满足f(a)·f(b)<0,则函数 在区间(a,b)内至少有一个零点,但零点的个数,需结合函数的单调性等性质进行判断. 方程的根与函数零点的研究方法,符合从特殊到一般的认识规律,从特殊的、具体的二次函数入手,建立二次函数的零点与相应二次方程的联系,然后将其推广到一般的、抽象的函数与相应方程的情形;零点存在性的研究,也同样采用了类似的方法,同时还体现了“数形结合思想”及“转化与化归思想”。 【课程目标】 一. 知识与技能目标 通过对二次函数图象的描绘,了解函数零点的概念,渗透由具体到抽象思想,领会函数零点与相应方程...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

2.4函数的零点的教学设计

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部