5G时代高铁覆盖解决方案研究如意工作室如意工作室01020304高铁场景需求分析5G高铁覆盖重要性及技术难点高铁多场景覆盖规划方案高铁覆盖解决方案建议•截至2018年底我国高铁里程达2.9万km,2025年将达3.8万km,累计发送旅客人数已超70亿人次,在4G时代,各大运营商针对高铁覆盖属于品牌场景网络建设的重中之重。随着高铁用户规模增长及多样化的业务感知要求,在5G大规模建设和应用中,对5G高铁覆盖解决方案的需求是非常迫切的。5G高铁覆盖方案将面临诸多困境,如5G网络高频段、高功耗、高传输带宽需求、多普勒频偏、频繁切换、穿透损耗大等。本文针对高铁多种场景,研究并提出对高铁的5G覆盖解决方案和规划设计方法,指导快速推进5G时代的高铁覆盖及精品高铁网络建设。一、高铁场景需求分析针对5G高铁覆盖面临诸多困境,从5G网络高频段、高功耗、高传输带宽需求、多普勒频偏、频繁切换、穿透损耗大等方面进行了分析。针对高铁场景特征及业务体验需求,研究并提出5G高铁覆盖解决方案和规划设计方法,为运营商在高铁场景快速部署5G网络提供技术支撑。•高铁乘客特征和运营商价值客户高度重合,是运营商的网络品牌的重要展示窗口:高铁运输能力大,单车容纳能力高,且环境舒适,用户业务使用比例高,整体业务需求较其他场景大;高铁用户中商务人士乘坐比例高,高端客户占比大,对于提升网络品牌具有重要意义,是5G时代网络建设的重点。二、5G高铁覆盖重要性及技术难点2.15G高铁覆盖的重要性高铁建设全面铺开,快速化、信息化已成为趋势:中国高铁里程占全球60%,成为中国人出行第一选择,累计发送旅客人次已超70亿,年增长率超35%。在高铁信息化及高铁用户快速增长的趋势下,5G时代运营商需要针对高铁覆盖拟定针对性的方案,在网络覆盖及用户体验上形成优势。二、5G高铁覆盖重要性及技术难点2.25G高铁覆盖技术难点高铁普遍存在的三大挑战:多普勒频偏、频繁切换、穿透损耗大。由于5G主力的3.5GHz频段频率高于4G,5G时代高铁覆盖更加困难,5G网络覆盖解决方案需要重点关注站点规划与布局、系统切换重叠区域设计、频率纠偏等方面,实现更好网络性能。表1不同频段的上行最大多普勒频偏二、5G高铁覆盖重要性及技术难点•2.2.1多普勒频偏影响接收机解调性能•5G无线通信系统要求峰值移动性支持≥500km/h,高速移动下的多普勒频偏(接受信号频率会偏离基站侧中心频点)会影响接收机解调性能,多普勒频偏在5G网络影响更大,3.5G相对1.8G频偏增大一倍,在3.5GHz情况下,列车速度达到350km/h时,上行多普勒频偏将大于2.2kHz,因此,在高频段、终端高速移动状态下如何克服多普勒频偏是5G网络关键技术难点之一。多普勒效解决方案主要为通过基站设备纠偏算法,进行用户的频率纠正来消除多普勒频偏移带来影响。图1高铁小区切换示意二、5G高铁覆盖重要性及技术难点•2.2.2超高速移动导致切换区不足及频繁切换问题•5G无线通信系统的系统可靠性需求为99.999%,端到端时延<1ms,在列车时速350km/h,切换区域超过90米,高速移动时所需要的重叠覆盖距离明显高于普通场景,且由于5G站距相对更小频繁切换问题明显。高铁速度350km/h、站距500米情况下,平均3s切换一次,终端用户在小区频繁切换,切换时带来的吞吐率体验下降明显,甚至掉话增加(如图1所示)。•频繁的小区切换将极大降低用户的感知,成为5G网络关键技术难点之一。解决办法需要合理的无线网络规划和参数设置,实现更快的小区重选和合理的小区重叠区满足小区间切换要求,同时,通过小区合并可以减少小区间切换次数,提高速率性能及可靠性。•2.2.35G高频段的车体穿透损耗更大•5G无线通信系统的目前使用频段为3.5GHz,自由空间损耗及车厢损耗较1.8GHz频段高,其中自由空间传播损耗高6dB,车体传播损耗高3~5dB。CRH380A车厢整体穿透损耗平均值约20dB,3.5GHz频段穿透损耗更高约25dB,不同车型采用材质差异,穿透损耗差异也很大(见表2),且基站到高铁的入射角越小,损耗越大,因此,在网络规划设计时入射角应控制在10°以上,基站到高铁最小距离为:80~200m。二、5G高铁覆盖重要性及技术难点表2不同列车不同频段的穿透损耗(dB)•3.1规划目标...