中考数学核心题目赏析 有理数及其运算篇 【核心提示】 有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方. 通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化.相反数看似简单,但互为相反数的两个数相加等于0 这个性质有时总忘记用..绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面. 【核心例题】 例 1计算:2 0 0 72 0 0 61......431321211 分析 此题共有2006项,通分是太麻烦.有这么多项,我们要有一种“抵消”思想,如能把一些项抵消了,不就变得简单了吗?由此想到拆项,如第一项可拆成2111211,可利用通项11111nnnn,把每一项都做如此变形,问题会迎刃而解. 解 原式=)2 0 0 712 0 0 61(......413131212111)()()( =2 0 0 712 0 0 61......41313121211 =2 0 0 711 =2 0 0 72 0 0 6 例 2 已知有理数a、b、c在数轴上的对应点分别为 A、B、C(如右图).化简bcbaa. 分析 从数轴上可直接得到 a、b、c的正负性,但本题关键是去绝对值,所以应判断绝对值符号内表达式的正负性.我们知道“在数轴上,右边的数总比左边的数大”,大数减小数是正数,小数减大数是负数,可得到 a-b<0、c-b>0. 解 由数轴知,a<0,a-b<0,c-b>0 所以,bcbaa= -a-(a-b)+(c-b)= -a-a+b+c-b= -2a+c 例 3 计算: 211311...9 8119 9111 0 011 AOBCabc 分析 本题看似复杂,其实是纸老虎,只要你敢计算,马上就会发现其中的技巧,问题会变得很简便. 解 原式=2132......9897999810099=1001 例 4 计算:2-22-23-24-……-218-219+220. 分析 本题把每一项都算出来再相加,显然太麻烦.怎么让它们“相互抵消”呢?我们可先从最简单的情况考虑.2-22+23=2+22(-1+2)=2+22=6.再考虑2-22-23+24=2-22+23(-1+2)=2-22+23=2+22(-1+2)=2+22=6.这怎么又等于 6了呢?是否可以把这种方法应用到原题呢?显然是可以的. 解 原式=2-22-23-24-……-218+219(-1+2) =2-22-23-24-……-218+219 =2-22-23-24-……-217+218(-1+2) =2-22-23-24-……-...