电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

函数的单调性与极值专项训练(假期)VIP免费

函数的单调性与极值专项训练(假期)_第1页
函数的单调性与极值专项训练(假期)_第2页
函数的单调性与极值专项训练(假期)_第3页
一、课内训练:1.确定下列函数的单调区间(1)y=x3-9x2+24x(2)y=x-x3(1)解:y′=(x3-9x2+24x)′=3x2-18x+24=3(x-2)(x-4)令3(x-2)(x-4)>0,解得x>4或x<2.∴y=x3-9x2+24x的单调增区间是(4,+∞)和(-∞,2)令3(x-2)(x-4)<0,解得2<x<4.∴y=x3-9x2+24x的单调减区间是(2,4)(2)解:y′=(x-x3)′=1-3x2=-3(x2-)=-3(x+)(x-)令-3(x+)(x-)>0,解得-<x<.∴y=x-x3的单调增区间是(-,).令-3(x+)(x-)<0,解得x>或x<-.∴y=x-x3的单调减区间是(-∞,-)和(,+∞)2.讨论二次函数y=ax2+bx+c(a>0)的单调区间.解:y′=(ax2+bx+c)′=2ax+b,令2ax+b>0,解得x>-∴y=ax2+bx+c(a>0)的单调增区间是(-,+∞)令2ax+b<0,解得x<-.∴y=ax2+bx+c(a>0)的单调减区间是(-∞,-)3.求下列函数的单调区间(1)y=(2)y=(3)y=+x(1)解:y′=()′= 当x≠0时,-<0,∴y′<0.∴y=的单调减区间是(-∞,0)与(0,+∞)(2)解:y′=()′当x≠±3时,-<0,∴y′<0.∴y=的单调减区间是(-∞,-3),(-3,3)与(3,+∞).(3)解:y′=(+x)′.当x>0时+1>0,∴y′>0.∴y=+x的单调增区间是(0,+∞)4.确定函数f(x)=x2-2x+4在哪个区间内是增函数,哪个区间内是减函数.解:f′(x)=(x2-2x+4)′=2x-2.令2x-2>0,解得x>1.∴当x∈(1,+∞)时,f′(x)>0,f(x)是增函数.令2x-2<0,解得x<1.∴当x∈(-∞,1)时,f′(x)<0,f(x)是减函数.5.确定函数f(x)=2x3-6x2+7在哪个区间内是增函数,哪个区间内是减函数.解:f′(x)=(2x3-6x2+7)′=6x2-12x令6x2-12x>0,解得x>2或x<0∴当x∈(-∞,0)时,f′(x)>0,f(x)是增函数.当x∈(2,+∞)时,f′(x)>0,f(x)是增函数.令6x2-12x<0,解得0<x<2.∴当x∈(0,2)时,f′(x)<0,f(x)是减函数.6.证明函数f(x)=在(0,+∞)上是减函数.证法一:(用以前学的方法证)任取两个数x1,x2∈(0,+∞)设x1<x2.f(x1)-f(x2)= x1>0,x2>0,∴x1x2>0 x1<x2,∴x2-x1>0,∴>0∴f(x1)-f(x2)>0,即f(x1)>f(x2)∴f(x)=在(0,+∞)上是减函数.证法二:(用导数方法证) =()′=(-1)·x-2=-,x>0,∴x2>0,∴-<0.∴,∴f(x)=在(0,+∞)上是减函数.点评:比较一下两种方法,用求导证明是不是更简捷一些.如果是更复杂一些的函数,用导数的符号判别函数的增减性更能显示出它的优越性.7.确定函数的单调减区间8.已知函数y=x+,试讨论出此函数的单调区间.解:y′=(x+)′=1-1·x-2=21fx=x2-2x+4xOy21fx=2x3-6x2+7xOy-22-11fx=x+1xxOy令>0.解得x>1或x<-1.∴y=x+的单调增区间是(-∞,-1)和(1,+∞).令<0,解得-1<x<0或0<x<1.∴y=x+的单调减区间是(-1,0)和(0,1)9.求y=x3-4x+的极值解:y′=(x3-4x+)′=x2-4=(x+2)(x-2)令y′=0,解得x1=-2,x2=2当x变化时,y′,y的变化情况如下表-2(-2,2)2+0-0+↗极大值↘极小值↗∴当x=-2时,y有极大值且y极大值=当x=2时,y有极小值且y极小值=-5f(x)=13x3-4x+42-2xOy10.求y=(x2-1)3+1的极值解:y′=6x(x2-1)2=6x(x+1)2(x-1)2令y′=0解得x1=-1,x2=0,x3=1当x变化时,y′,y的变化情况如下表-1(-1,0)0(0,1)1-0-0+0+↘无极值↘极小值0↗无极值↗∴当x=0时,y有极小值且y极小值=01-1fx=x2-13+1xOy11.求下列函数的极值.(1)y=x2-7x+6(2)y=x3-27x(1)解:y′=(x2-7x+6)′=2x-7令y′=0,解得x=.当x变化时,y′,y的变化情况如下表.-0+↘极小值↗∴当x=时,y有极小值,且y极小值=-(2)解:y′=(x3-27x)′=3x2-27=3(x+3)(x-3)令y′=0,解得x1=-3,x2=3.当x变化时,y′,y的变化情况如下表-3(-3,3)3+0-0+↗极大值54↘极小值-54↗∴当x=-3时,y有极大值,且y极大值=54当x=3时,y有极小值,且y极小值=-54二、课后练习:1.函数是减函数的区间为(D)A.B.C.D.2.函数y=xcosx-sinx在下面哪个区间内是增函数(B)A()B(π,2π)C()D(2π,3π)3.设f'(x)是函数f(x)的导函数,y=f'(x)的图象如右图所示,则y=f(x)的图象最有可能的是(C)ABCD4.函数的单调减区间是(A)A.B.C.及D.5.函数f(x)的定义域为开区间(a,b),导函数f(x)在(a,b)内的图象...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

文章天下+ 关注
实名认证
内容提供者

各种文档应有尽有

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部