1 / 17 四、定积分的求法[ 定积分的性质 ] abbaxxfxxfd)(d)(aaxxf0d)(bccabaxxfxxfxxfd)(d)(d)(bababaxxgkxxfkxxgkxfkd)(d)(d)]()([2121[ 分部积分法 ] babababaxxfxgxgxfxgxfxxgxfd)(')(|)()()(d)(d)(')(式中)()()()(|)()(agafbgbfxgxfba[ 变量替换法 ] 设函数)(x 在区间 [ba, ]上有连续的导数)(' x ,同时函数)(uf在区间)](),([ba上连续,并且 u 从)(a 单调地变到)(b ,则)()(d)(d)(')]([babauufxxxf[利用函数奇偶性求积法]若)(xf为偶函数,则aaaxxfxxf0d)(2d)(若)(xf为奇函数,则0d)(aaxxf[利用积分对参数求导法]设 f(x,t)在有界区域),(tbxaR上连续,并且存在连续偏导数),(txft,则当t时,有xtxftxtxftbabad),(d),(dd例计算积分xxxIdln110解设10d),()(,ln1),(xtxfxFxxtxft则IFF)1(,0)0(.因11dd)ln1(dd1010txxxxxttFtt1010d11)(dttxF所以︳2ln)1(FI. [定积分表]定 积 分定 积 分 值2 / 17 d xax22020aa()112401xxxd4201d1xxxn)10(sinnn定 积 分定 积 分 值sind20axx2cosd20axx2sin dcos dnnxx0202)(!!!)!1()(2!!!)!1()1()12()21(2为正奇数为正偶数nnnnnnnnnsin() dxx20122cos()dxx20122sindaxxx02020()()aatandxxx02arcsindxxx0122lnsind220axxx2asindxxx02cosdxxx02sincosdaxaxxa000dcossinxaxax00dsinsinxbxax0()ab3 / 17 coscosdaxbxx00()absincosdaxbxx0)(0)(222为偶数为奇数bababaa定 积 分定 积 分 值sincosd( ,)axbxxxa b00240()()()abababsincosdaxbxxx20aab2()coscosdaxbxxx0ln ba(arctanarctan) daxxbxxx0baln2eexxaxbxd0ln ba10 abxxcosdabab220()102abxxcosdarccos()baabab22cosdaxxx1202020eaeaaa()()exax d010aa()x exnax d0nann!(1为正整数 ,a>0) xexax d0120aaa()exxaxd0aa()0ebxxax cosd0aaba220()ebxxax sind0baba220()表中).12(531!)!12(),2(642!)!2(nnnn4 / 17 ebxxax chd0aabba22 (| |)ebxxax shd0babba22 (| |)0dsinxxxeaxarccot()a a0exa x220d20aa()x exnax202d()!!()21201naaann定 积 分定 积 分 值ebxxa x220cosdeaaba22420()exxax2220deaa220()(ln) dxxn01()!1nn(n 为正整数 ) lndxxx10126lndxxx101212ln() d101xxx212lndxxx120128lndxxx120122ln10d11lnxxxx24lndeexxx11024lnd101xx21101lndxxln()d101xx32xxxxbalnd01ln 11baln sindxx0222ln5 / 17 ln cos dxx0222lnxxxlnsind0222lnln(cos )dabxx0ln()aabab222...