1 行程问题。 要掌握行程中的基本关系:路程=速度×时间。 相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。 追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。 环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。 航行问题:相对运动的合速度关系是:顺水速度=静水中速度+水流速度;逆水速度=静水中速度-水流速度。 行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。 工程问题。 其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。 溶液配制问题。 其基本数量关系是:溶液质量=溶质质量+溶剂质量;溶质质量=溶液中所含溶质的质量分数。这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。 利润率问题。 其数量关系是:商品的利润=商品售价-商品的进价;商品利润率=商品利润/商品进价×100%,注意打几折销售就是按原价的百分之几出售。 银行储蓄问题。 其数量关系是:利息=本金×利率×存期;本息=本金+利息,利息税=利息×利息税率。注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。 数字问题。 要正确区分“数”与“数字”两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和。 年龄问题其基本数量关系:大小两个年龄差不会变。 这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。 数字问题: 1 、一个两位数,十位上的数比个位上的数小 1 。十位上的数与个位上的数的和是这个两位数的,求这个两位数。 2 、一个两位数,个位上的数与十位上的数的和为 7 ,如果把十位与个位的数对调。那么所得的两位数比原两位数大 9 。求原来的两位数。 3 、一个两位数的十位上的数比个位上的数小 1 ,如十位上的数扩大 4 倍,个位上的数减 2 ,那么所得的两位数比原数大 5 8 ,求原来...