PFC颗粒流基本知识介绍主要内容第一部分PFC颗粒流程序简介第二部分有限差分法基础介绍第三部分离散元法基础介绍第四部分PFC的使用第一部分PFC颗粒流程序简介1、理论背景2、颗粒流方法的基本思想3、颗粒流方法的基本假设4、颗粒流方法的特点5、可选特性6、应用领域7、求解步骤应力状态分析离散介质运动分析处理连续和非连续问题分析有限差分法有限单元法边界元法等离散元法流行元法等能够模拟连续和非连续问题的材料各力学行为(包括弹性、塑性、开裂、破裂、峰值载荷后劣化、突变等)的数值模拟工具已成为研究者追求的目标。岩土工程科学研究方法岩土工程科学研究方法不连续性和非线性研究方法不确定性研究方法损伤力学和断裂力学研究方法损伤力学和断裂力学研究方法块体力学研究方法块体力学研究方法离散单元研究方法离散单元研究方法系统分析方法非线性系统理论分析方法数值流行研究方法数值流行研究方法1、2、3、4作为离散元的一种,颗粒流程序(ParticleFollowCodePFC)数值模拟新技术,其理论基础是Cundall[1979]提出的离散单元法,用于颗粒材料力学性态分析,如颗粒团粒体的稳定、变形及本构关系,专门用于模拟固体力学大变形问题。它通过圆形(或异型)离散单元来模拟颗粒介质的运动及其相互作用。由平面内的平动和转动运动方程来确定每一时刻颗粒的位置和速度。作为研究颗粒介质特性的一种工具,它采用有代表性的数百个至上万个颗粒单元,通过数值模拟实验可以得到颗粒介质本构模型。1、理论背景PFC(ParticleFollowCode)是通过离散单元方法来模拟圆形颗粒介质的运动及其相互作用。最初,这种方法是研究颗粒介质特性的一种工具,它采用数值方法将物体分为有代表性的数百个颗粒单元,期望利用这种局部的模拟结果来研究边值间题连续计算的本构模型。以下两种因素促使PFC方法产生变革与发展:(1)通过现场实验来得到颗粒介质本构模型相当困难;(2)随着微机功能的逐步增强,用颗粒模型模拟整个问题成为可能,一些本构特性可以在模型中自动形成。因此,PFC便成为用来模拟固体力学和颗粒流问题的一种有效手段。颗粒流程序是一种离散单元法,它通过圆形颗粒介质的运动及其相互作用来模拟颗粒材料的力学特性。在这种颗粒单元研究的基础上,通过一种非连续的数值方法来解决包含复杂变形模式的实际问题。在具有颗粒结构特性岩土介质颗粒结构特性岩土介质中的应用,就是从其细观力学特征出发,将材料的力学响应问题从物理域映射到数学域内进行数值求解。与此相应,物理域内实物颗粒被抽象为数学域内的颗粒单元,并通过颗粒单元来构建和设计任意几何性状的试样,颗粒间的相互作用通过接触本构关系接触本构关系来实现,数值边界条件的确定和试样的若干应力平衡状态通过迭代分析进行,直到使数值试样的宏观力学特性逼近材料的真实力学行为或者工程特性。2、颗粒流方法的基本思想3、颗粒流方法的基本假设颗粒流方法在模拟过程中作了如下假设:1)颗粒单元为刚性体;2)接触发生在很小的范围内,即点接触;3)接触特性为柔性接触,接触处允许有一定的“重叠”量;4)“重叠”量的大小与接触力有关,与颗粒大小相比,“重叠”量很小;5)接触处有特殊的连接强度;6)颗粒单元为圆盘形(或球形)。实际工程中大部分大变形都被解释为沿各类软弱面、接触带发生的相对运动,因而颗粒为刚性假设是合适的。对于密实颗粒集合体或者粒状颗粒集合体材料的变形来说,使用这种假设非常恰当。这是因为这些材料的变形主要来自于颗粒刚性体的滑移和转动以及接触界面处的张开和闭锁,而不是来自于单个颗粒本身的变形。为了获得岩土体内部的力学特性,可以将其看作由许多小颗粒堆积形成的密实颗粒集合体组成的固体,并通过定义有代表性的测量区域,然后取平均值来近似度量岩土体内部的应力和应变。在颗粒流模型中,除了存在代表材料的圆盘形或球形颗粒外,还包括代表边界的“墙”。颗粒和墙之间通过相互接触处重叠产生的接触力发生作用,对于每一个颗粒都满足运动方程,而对于墙不满足运动方程,即作用于墙上的接触力不会影响墙的运动。墙的运动是通过人为给定速度,并且不受作用在其上的接触力的影响。同样,两个墙之...