精品文档---下载后可任意编辑整系数多项式的有理根的定理及求解方法系别 & 专业: 数学系 - 数学与应用数学专业 姓名 & 学号: 刘玉丽 0934118 年级 & 班别: 2024 级 1 班 老师 & 职称: 张洪刚 2012 年 9 月 1 日摘 要:整系数多项式在多项式的讨论中占有重要的地位,其应用价值也越来越被人们所认识。本文是关于整系数多项式有理根的求解的一个综述,希望能够给对整系数多项式感兴趣的朋友提供一定的参考。本文根据相关文献资料,给出了关于整系数多项式有理根的较为系统的求法。求解整系数多项式的有理根时,首先要判定整系数多项式是否存在有理根。若存在,则可利用求解有理根的方法法将所有可能的有理根求出。为了简化求解过程,可以先运用本文中的相关定理,将可能的有理根的范围尽量缩小,然后再用综合除法进行检验,进而求出整系数多项式的全部有理根。关键词:整系数多项式; 有理根的求法; 有理根的判定Abstract:Integral coefficients polynomial plays an important role in the research of polynomial, and its application value will be known by more and more people. This article is about solving of rational root of integral coefficients polynomial, and I hope this can provide some references to people interested in this. There are some systematic methods of rational root of integral coefficients polynomial in some related document literature. And by which, we know we must make sure integral coefficients polynomial f(x) has rational root when we want to solve the rational root of integral coefficients.If it exists, we can get all the possible rational roots. However, in order to make the procedure easier, we can apply the related theorem in this article and narrow down the extent. And then we can testify them and get all the rational roots.Keywords: Integral coefficients polynomial method to solve rational roots judgment of rational roots第一章 整系数多项式的基本内容【1】本节给出了整系数多项式的基本定理----高斯(Gauss)引理。定义 1[1]假如一个多项式...