第 1 页 (共 37 页) 运筹学判断题 一、第1 章 线性规划的基本理论及其应用 1、线性规划问题的可行解集不一定是凸集。(×) 2、若线性规划无最优解则其可行域无界。(×) 3、线性规划具有惟一的最优解是指最优表中非基变量检验数全部非零。(√) 4、线性规划问题的每一个基本可行解对应可行域的一个顶点。(√) 5、若线性规划模型的可行域非空有界,则其顶点中必存在最优解。(√) 6、线性规划问题的大 M 法中,M 是负无穷大。(×) 7、单纯形法计算中,若不按最小比值原则选取换出变量,则在下一个解中至少有一个基变量为负。(√) 8、对于线性规划问题的基本可行解,若大于零的基变量数小于约束条件数,则解是退化的。(√)。 9、一旦一个人工变量在迭代过程中变为非基变量后,则该变量及相应列的数字可以从单纯性表中删除,且这样做不影响计算结果。(√) 10、线性规划的目标函数中系数最大的变量在最优解中总是取正值。(×) 11、对一个有n 个变量,m 个约束的标准型的线性规划问题,其可行域的顶点恰好为个mnC。(×) 12、线性规划解的退化问题就是表明有多个最优解。(×) 13、如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。(√) 14、单纯型法解线性规划问题时值为 0 的变量未必是非基变量。(√) 15、任何线性规划问题度存在并具有唯一的对偶问题。(√) 16、对偶问题的对偶问题一定是原问题。(√) 17、根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解;反之,当对偶问题无可行解时,其原问题为无界解。(×) 18、若原问题有可行解,则其对偶问题也一定有可行解。(×) 19、若原问题无可行解,其对偶问题也一定无可行解。(×) 20、若原问题有最优解,其对偶问题也一定有最优解。(√) 21、已知*iy 为线性规划的对偶问题的最优解,若*0iy ,说 明在最优生 产 计划中,第i 种资 源 一定有剩 余 。(×) 22、原问题具有无界解,则对偶问题不可行。(√) 23、互 为对偶问题,或 者 同时都 有最优解,或 者 同时都 无最优解。(√) 24、某 公 司 根据产 品 最优生 产 计划,若原材 料 的影子 价 格 大于它的市 场 价 格 ,则可购 进 原材料 扩 大生 产 。(√) 25、对于线性规划问题,已知原问题基本解不可行,对偶问题基本解可行,可采 用对偶单纯形法求 解。(√) 26、原问题(极 小值)...