加法原理和乘法原理 导言: 加法原理和乘法原理,是排列组合中的二个基本原理,在解决计数问题中经常运用。把握这两个原理,并能正确区分这两个原理,至关重要。 一、概念 (一)加法原理 如果完成某件事共有几类不同的方法,而每类方法中,又有几种不同的方法,任选一种方法都可以完成此事,那么完成这件事的方法总数就等于各种方法的总和,这一原理称为加法原理。 例:从甲地到乙地,一天中火车有 4班,汽车有 2班,轮船有 3班,那么,一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法? 解析:把乘坐不同班次的车、船称为不同的走法。要完成从甲地到乙地这件事,可以乘火车,也可以乘汽车,还可以乘轮船,一天中,乘火车有 4种走法,乘汽车有 2种走法,乘轮船有 3种走法。而乘坐火车、汽车、轮船中的任何一班次,都可以从甲地到乙地,符合加法原理。所以从甲地到乙地的总的走法=乘火车的 4种走法+乘汽车的 2种走法+乘轮船的 3种走法=9种不同的走法 (二)乘法原理 如果做某件事,需要分几个步骤才能完成,而每个步骤又有几种不同的方法,任选一种方法都不能完成这件事,那么完成这件事的方法总数,就等于完成各步骤方法的乘积。 例:用 1、2、3、4这四个数字可以组成多少个不同的三位数? 解析:要完成组成一个三位数这件事,要分三个步骤做,首先选百位上的数,再选十位上的数,最后选个位上的数。 选百位上的数这一步骤中,可选 1、2、3、4任何一个,共 4种方法 选十位上的数这一步骤中,可选除百位上已选好那个数字之外的三个数字,共 3种方法 选个位上的数这一步骤中,可选除百、十位上已选好的两个数字之外的另两个数字,共 2种方法 单独挑上面的任何一步中的任何一种方法,都不能组成一个三位数,符合乘法原理 所以,可以组成:4×3×2=24(个)不同的三位数 二、加法原理和乘法原理的区别 什么时候使用加法原理,什么时候使用乘法原理,最关键是要把握住加法原理与乘法原理的区别。从上面两个例子我们容易发现,加法原理与乘法原理最大的区别就是:如果完成一件事有几类方法,不论哪一类方法,都能完成这件事时,运用加法原理,简称为“分类-----加法”;如果完成一件事要分几个步骤,而无论哪一个步骤,都只是完成这件事的一部分,只有每一步都完成了,这件事才得以完成,这里运用乘法原理,简称为“分步----乘法”。 三、加乘法原理的综合应用 有时候,做某件事有几类方法,而每一类方法...