1-1.简述优化设计问题数学模型的表达形式。 答:优化问题的数学模型是实际优化设计问题的数学抽象。在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。 求设计变量向量12Tnxx xxL使( )minf x 且满足约束条件 ( )0(1,2,)kh xklL ( )0(1,2,)jgxjmL 利 用可 行 域 概念 , 可 将数 学 模 型的 表 达 进一 步 简 练。 设 同 时满 足( )0(1,2,)jgxjmL和( )0(1,2,)khxklL的设计点集合为R,即R 为优化问题的可行域,则优化问题的数学模型可简练地写成 求 x 使 min( )x Rf x 符号“ ”表示“从属于”。 在 实 际 优 化 问 题 中 , 对 目 标 函 数 一 般 有 两 种 要 求 形 式 : 目 标 函 数 极 小 化( )minf x 或 目 标 函 数 极 大 化( )maxf x 。由于求( )f x 的极大化与求( )f x的极小化等价,所以今后优化问题的数学表达一律采用目标函数极小化形式。 1-2.简述优化设计问题的基本解法。(不要抄书,要归纳) 答:求解优化问题可以用解析解法,也可以用数值的近似解法。 解析解法就是把所研究的对象用数学方程(数学模型)描述出来,然后再用数学解析方法(如微分、变分方法等)求出有化解。 但是,在很多情况下,优化设计的数学描述比较复杂,因而不便于甚至不可能用解析方法求解;另外,有时对象本身的机理无法用数学方程描述,而只能通过大量试验数据用插值或拟合方法构造一个近似函数式,再来求其优化解,并通过试验来验证;或直接以数学原理为指导,从任取一点出发通过少量试验(探索性的计算),并根据试验计算结果的比较,逐步改进而求得优化解。这种方法是属于近似的、迭代性质的数值解法。 数值解法不仅可用于求复杂函数的优化解,也可以用于处理没有数学解析表达式的优化问题。因此,它是实际问题中常用的方法,很受重视。其中具体方法较多,并且目前还在发展。但是,应当指出,对于复杂问题,由于不能把所有参数都完全考虑并表达出来,只能是一个近似的最后的数学描述。由于它本来就是一种近似,那么,采用近似性质的数值方法对它们进行解算,也就谈不到对问题的精确性有什么影响了。 不管是解析解法,还是数值解法,都分别具有针对无约束条件和有约束条件的具体方法。 可以按照对函数倒数计算的要求,把数值方法分为需要计算函数的二阶导数、一阶导数和零阶导数...