电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

标准误差standarderror,均方根误差中误差(RMSE,rootmeansquarederror)

标准误差standarderror,均方根误差中误差(RMSE,rootmeansquarederror)_第1页
1/21
标准误差standarderror,均方根误差中误差(RMSE,rootmeansquarederror)_第2页
2/21
标准误差standarderror,均方根误差中误差(RMSE,rootmeansquarederror)_第3页
3/21
标准差(Standard Deviation) ,也称均方差(mean square error),是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 简介 标准差也被称为标准偏差,或者实验标准差,公式如图。 简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 例如,两组数的集合 {0, 5, 9, 14} 和 {5, 6, 8, 9} 其平均值都是 7 ,但第二个集合具有较小的标准差。 标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。 标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越细,代表回报较为稳定,风险亦较小。 例如,A、B两组各有 6位学生参加同一次语文测验,A组的分数为 95、85、75、65、55、45,B组的分数为 73、72、71、69、68、67。这两组的平均数都是 70,但 A组的标准差为 17.07分,B组的标准差为 2.37分(此数据时在 R统计软件中运行获得),说明 A组学生之间的差距要比 B组学生之间的差距大得多。 如是总体,标准差公式根号内除以 n 如是样本,标准差公式根号内除以(n-1) 因为我们大量接触的是样本,所以普遍使用根号内除以(n-1) 公式意义 所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一),再把所得值开根号,所得之数就是这组数据的标准差。 标准差的意义 标准差越高,表示实验数据越离散,也就是说越不精确 反之,标准差越低,代表实验的数据越精确 离散度 标准差是反应一组数据离散程度最常用的一种量化形式,是表示精密确的最要指标。说起标准差首先得搞清楚它出现的目的。我们使用方法去检测它,但检测方法总是有误差的,所以检测值并不是其真实值。检测值与真实值之间的差距就是评价检测方法最有决定性的指标。但是真实值是多少,不得而知。因此怎样量...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

标准误差standarderror,均方根误差中误差(RMSE,rootmeansquarederror)

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部