1 正比例和反比例的意义 知识点一:正比例和反比例的意义 (1)正比例 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量变叫做成正比例的量,它们的关系叫做正比例关系。 用字母x 和y 表示两种相关联的量,用k 表示一定的量,那么正比例关系可以写成: 一定kxy 例如,总价随着数量的变化而变化,总价和数量的比的比值(单价)是一定的,我们就说,总价和数量是成正比例的量。 工总工时 =工效(一定) 工总和工时是成正比例的量 路程时间 =速度(一定) 所以路程与时间成正比例。 (2)反比例 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。 用字母x 和y 表示两种相关联的量,用k 表示一定的量,那么反比例关系可以写成: x × y =k (一定) 例如,长×宽=面积(一定) 长和宽是成反比例的量 每本的页数×装订的本数=纸的总页数(一定) 每本的页数和装订的本数是成反比例的量 知识点二:正比例和反比例有什么相同点和不同点? (1)相同点:正、反比例都是研究两种相关联的量之间的关系,即一种量变化,另一种量也随着变化。 (2)不同点:正比例是两种相关联的量中相对应的两个数的比值(商)一定;反比例是两种相关联的量中相对应的两个数的积一定。 正比例 反比例 相同点 2 不 同 点 知识点三:正比例和反比例的图像是一条什么线? (1)正比例关系的图象是一条过原点的直线。 (2)反比例关系的量是一条不过原点的曲线。 知识点四:正比例和反比例的判断 3 (1)先判断两种量x 和y 是不是相关联的量,即一种量变化,另一种量也随着变化。 (2)若符合一定kxy ,则x 和y 成正比例;若符合x × y =k (一定),则x 和y 成反比例;否则,这两种量就不成比例关系。 【典型例题】 题型一:根据图标填写信息 例1 :购买面粉的重量和钱数如下表,根据表填空。 重量(千克) 1 2 3 4 5 6 … 总价(元) 1.9 3.8 5.7 7.6 9.5 11.4 … (1)( )和( )是两种相关联的量,( )随着( )的变化而变化。 (2)与总价 7.6 元相对应的重量是( )千克;与 6 千克相对应的总价是( )元。 (3)总价与重量中相对应的两个数的比值所表示的意义是( )。 (4)因为比值一定...