用样本估计总体 【学习目标】 1.在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图. 2.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计. 3.正确理解样本数据标准差的意义和作用,学会计算数据的标准差. 4.能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释. 5.会用样本的基本数字特征估计总体的基本数字特征. 【要点梳理】 要点一、频率分布的概念 频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为: 1.计算一组数据中最大值与最小值的差,即求极差 2.决定组距与组数 3.将数据分组 4.列频率分布表 5.画频率分布直方图 要点诠释: 频率分布直方图的特征: 1.从频率分布直方图可以清楚的看出数据分布的总体趋势. 2.从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了. 要点二、频率分布折线图、总体密度曲线 1.频率分布折线图的定义: 连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图. 2.总体密度曲线的定义: 在样本频率分布直方图中,样本容量越大,所分组数越多,相应 的频率折线图会越来 越接近 于 一条 光 滑曲线,统 计中称 这 条 光 滑 曲线为总体密度曲线. 要点诠释: 总体密度曲线能够 精 确地反映了总体在各个范围内取值的百 分比,它 能给 我 们 提供 更 加 精 细 的信息,能够 精 确的反映一个总体在各个区 域 内取值的规 律 . 要点三 、茎叶图 当数据是两 位 有效 数字时 ,用中间 的数字表示十 位 数,即第 一个有效 数字,两 边 的数字表示个位 数,即第 二个有效 数字,它 的中间 部 分像 植 物 的茎,两 边 部 分像 植 物 茎上长出来 的叶子 ,因 此 通常 把这 样的图叫做茎叶图. 要点诠释: 茎叶图的特征: (1)用茎叶图表示数据有两 个优 点:一是在统 计图上没 有原始数据信息的损 失 ,所有数据信息都 可以从茎叶图中得到; 二是茎叶图中的数据可以随 时 记 录 ,随 时 添 加 ,方便 记 录 与表示. (2)茎叶图只 便 于 表示两 位 有效 数字的数据,而且 茎叶图只 方便 记 录 两 组的数据,两 个以上的数...