聚类分析 cluster analysis 聚类分析方法是按样品(或变量)的数据特征,把相似的样品(或变量)倾向于分在同一类中,把不相似的样品(或变量)倾向于分在不同类中。 聚类分析根据分类对象不同分为Q 型和R 型聚类分析 在聚类分析过程中类的个数如何来确定才合适呢?这是一个十分困难的问题,人们至今仍未找到令人满意的方法。但是这个问题又是不可回避的。下面我们介绍几种方法。 1、给定阈值——通过观测聚类图,给出一个合适的阈值T。要求类与类之间的距离不要超过T 值。例如我们给定T=0.35,当聚类时,类间的距离已经超过了 0.35,则聚类结束。 聚类分析的出发点是研究对象之间可能存在的相似性和亲疏关系。 样品间亲疏程度的测度 研究样品或变量的亲疏程度的数量指标有两种,一种叫相似系数,性质越接近的变量或样品,它们的相似系数越接近于1 或一l,而彼此无关的变量或样品它们的相似系数则越接近于0,相似的为一类,不相似的为不同类;另一种叫距离,它是将每一个样品看作 p 维空间的一个点,并用某种度量测量点与点之间的距离,距离较近的归为一类,距离较远的点应属于不同的类。 变量之间的聚类即 R 型聚类分析,常用相似系数来测度变量之间的亲疏程度。而样品之间的聚类即 Q 型聚类分析,则常用距离来测度样品之间的亲疏程度。 定义:在聚类分析中反映样品或变量间关系亲疏程度的统计量称为聚类统计量,常用的聚类统计量分为距离和相似系数两种。 距 离: 用于对样品的聚类。常用欧氏距离,在求距离前, 需把指标进行标准化 。 相似系数: 常用于对变量的聚类。一般采用相关系数 。 相似性度量:距离和相似系数。 距离常用来度量样品之间的相似性,相似系数常用来度量变量之间的相似性。 样品之间的距离和相似系数有着各种不同的定义,而这些定义与变量的类型有着非常密切的关系。 距离和相似系数这两个概念反映了样品(或变量)之间的相似程度。相似程度越高,一般两个样品(或变量)间的距离就越小或相似系数的绝对值就越大;反之,相似程度越低,一般两个样品(或变量)间的距离就越大或相似系数的绝对值就越小。 一、变量测量尺度的类型 为了将样本进行分类,就需要研究样品之间的关系;而为了将变量进行分类,就需要研究变量之间的关系。但无论是样品之间的关系,还是变量之间的关系,都是用变量来描述的,变量的类型不同,描述方法也就不同。通常,变量按照测量它们的尺度不同,可以分为三类...