电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

费马大定理的证明

费马大定理的证明_第1页
1/332
费马大定理的证明_第2页
2/332
费马大定理的证明_第3页
3/332
Annals of Mathematics, 141 (1995), 443-552Modular elliptic curves andFermat’s Last TheoremBy Andrew John Wiles*For Nada, Claire, Kate and OliviaPierre de FermatAndrew John WilesCubum autem in duos cubos, aut quadratoquadratum in duos quadra- toquadratos, et generaliter nullam in infinitum ultra quadratum potestatum in duos ejusdem nominis fas est dividere: cujes rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.- Pierre de Fermat ∼ 1637Abstract. When Andrew John Wiles was 10 years old, he read Eric Temple Bell’s The Last Problem and was so impressed by it that he decided that he would be the first person to prove Fermat’s Last Theorem. This theorem states that there are no nonzero integers a, b, c, n with n > 2 such that an + bn = cn. This object of this paper is to prove that all semistable elliptic curves over the set of rational numbers are modular. Fermat’s Last Theorem follows as a corollary by virtue of work by Frey, Serre and Ribet.IntroductionAn elliptic curve over Q is said to be modular if it has a finite covering by a modular curve of the form X0(N ). Any such elliptic curve has the property that its Hasse-Weil zeta function has an analytic continuation and satisfies a functional equation of the standard type. If an elliptic curve over Q with a given j-invariant is modular then it is easy to see that all elliptic curves with the same j-invariant are modular (in which case we say that the j-invariant is modular). A well-known conjecture which grew out of the work of Shimura and Taniyama in the 1950’s and 1960’s asserts that every elliptic curve over Q is modular. However, it only became widely known through its publication in a paper o...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

费马大定理的证明

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部