第二章基本初等函数第二章基本初等函数金乡高中金乡高中金金瑜瑜§2§2..11指数函数指数函数2.2.1.11.1指数与指数幂的运算(三课时)指数与指数幂的运算(三课时)第一课时:教学目标:1.理解n次方根、根式的概念;2.正确运用根式运算性质;3.培养学生认识、接受新事物和用联系观点看问题的能力。教学重点:根式的概念、运算性质教学难点:根式概念的理解教学方法:学导式教学过程:(Ⅰ)创设情景;阅读问题1、问题2,认识将指数的取值范围进行推广的重要性和必要性。(Ⅱ)复习回顾引例:填空(1);a0=(a;(2)aman=____(m,n∈Z);(am)n=___(m,n∈Z);(ab)n=___(n∈Z)(3);-;(4);(1)(2)复习整数指数幂的概念和运算性质;(3)(4)复习平方根的概念(Ⅲ)讲授新课22=4,(-2)2=42,-2叫4的平方根23=82叫8的立方根;(-2)3=-8-2叫-8的立方根25=322叫32的5次方根…2n=a2叫a的n次方根1.n次方根的定义:(板书)一般地,如果,那么x叫做a的n次方根(throot),其中,且。问题1:n次方根的定义给出了,x如何用a表示呢?是否正确?分析过程:例1.根据n次方根的概念,分别求出27的3次方根,-32的5次方根,a6的3次方根。(要求完整地叙述求解过程)结论1:当n为奇数时(跟立方根一样),有下列性质:正数的n次方根是正数,负数的n次方根是负数,任何一个数的方根都是唯一的。此时,a的n次方根可表示为。从而有:,,例2.根据n次方根的概念,分别求出16的4次方根,-81的4次方根。结论2:当n为偶数时(跟平方根一样),有下列性质:正数的n次方根有两个且互为相反数,负数没有n次方根。此时正数a的n次方根可表示为:其中表示a的正的n次方根,表示a的负的n次方根。例3.根据n次方根的概念,分别求出0的3次方根,0的4次方根。结论3:0的n次方根是0,记作当a=0时也有意义。这样,可在实数范围内,得到n次方根的性质:3.n次方根的性质:(板书)其中叫根式,n叫根指数,a叫被开方数。注意:根式是n次方根的一种表示形式,并且,由n次方根的定义,可得到根式的运算性质。4.根式运算性质:(板书)①,即一个数先开方,再乘方(同次),结果仍为被开方数。问题2:若对一个数先乘方,再开方(同次),结果又是什么?例4:求,,,由所得结果,可有:(板书)②性质的推导(略):(Ⅳ)例题讲解例1.求下列各式的值:(4)(a>b)注意:根指数n为奇数的题目较易处理,要侧重于根指数n为偶数的运算。(III)课堂练习:求下列各式的值(1)(2)(3)(4)(IV)课时小结通过本节学习,大家要能在理解根式概念的基础上,正确运用根式的运算性质解题。(V)课后作业1、书面作业:书P65习题2.1A组题第1题。2、预习作业:a.预习内容:课本P55—P58。b.预习提纲:(1)根式与分数指数幂有何关系?(2)整数指数幂运算性质推广后有何变化?第二课时:教学目标:1.理解分数指数幂的概念;2.正确运用有理指数幂的运算性质;3.培养学生认识、接受新事物和用联系观点看问题的能力。教学重点:分数指数幂的概念和运算性质教学难点:分数指数幂概念的理解教学方法:学导式(I)复习回顾1.填空(1)(2);(3)(4)(5);(6)(II)讲授新课分析:对于“填空”中的第四题,既可根据n次方根的概念来解:;也可根据n次方根的性质来解:。问题1:观察,结果的指数与被开方数的指数,根指数有什么关系?问题2:当根式的被开方数的指数不能被根指数整除时,根式是否可以写成分数指数幂的形式?如:是否可行?分析:假设幂的运算性质对于分数指数幂也适用,那么,这说明也是的3次方根,而也是a2的3次方根(由于这里n=3,a2的3次方根唯一),于是。这说明可行。由此可有:1.正数的正分数指数幂的意义:<板书>)注意两点:一是分数指数幂是根式的另一种表示形式;二是要注意被开方数an的幂指数n与根式的根指数n的一致性。根式与分数指数幂可以进行互化。问题3:在上述定义中,若没有“a>0”这个限制,行不行?分析:正例:等等;反例:;问题4:如何定义正数的负分数指数幂和0的分数指数幂?分析:正数的负分数指数幂的定义与负整数指数幂的意义相仿;0的分数指数幂与0的非0整数幂的意义相仿。2.负分数指数幂:<板书>3.0的...