电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

2014年高中数学 1.2应用举例教学设计 新人教A版必修5

2014年高中数学 1.2应用举例教学设计 新人教A版必修5_第1页
1/4
2014年高中数学 1.2应用举例教学设计 新人教A版必修5_第2页
2/4
2014年高中数学 1.2应用举例教学设计 新人教A版必修5_第3页
3/4
1.2 应用举例教材分析三维目标知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.过程与方法通过将实际问题建立数学模型,使学生充分认识到建立数学模型的重要性,进行测量,掌握数学术语及数学作图方法,体会数学的严谨性.情感态度与价值观数学来源于生活,又应用于生活,一方面,三角形知识广泛应用于实际问题中,另一方面,实际问题的解决又推动了三角形的进一步完善和发展,通过亲自动手测量,写出实习报告等体会到数学市有用的,我能用数学,也能用好数学.教学重点 分析测量问题的实际情景,从而找到测量距离的方法.教学难点 实际问题向数学问题转化思路的确定,即根据题意建立数学模型,画出示意图.教学建议解三角形知识在实际问题中有着广泛的应用,如测量、航海等都要用到这方面的知识.对于解三角形的实际问题,我们要在理解一些术语(如坡角、仰角、俯角、方位角、方向角等)的基础上,正确地将实际问题中的长度、角度看成三角形相应的边和角,创造可解的条件,综合运用三角函数知识以及正弦定理和余弦定理来解决.学习这部分知识有助于增强学生的数学应用意识和解决实际问题的能力.本节的例 1、例 2 是两个有关测量距离的问题.例 1 是测量从一个可到达的点到一个不可到达的点之间的距离问题,例 2 是测量两个不可到达的点之间距离的问题.对于例 1 可以引导学生分析这个问题实际上就是已知三角形两个角和一边解三角形的问题,从而可以用正弦定理去解决.对于例 2 首先把求不可到达的两点 A、B 之间的距离转化为应用余弦定理求三角形的边长的问题,然后把求未知的 BC 和 AC 的问题转化为例 1 中测量可到达的一点与不可到达的一点之间的距离问题.导入新课一湖北省十堰市郧县柳坡镇马蹄沟村,是一个世代被大山阻隔的小山村,在无法承载贫穷重负和生命重压之下,毅然决然以一己之力,用比较落后的方式,开始了一段长达五年的艰难的开山之旅。他们经历了令人难以想象的风险,终于打通了一条长 400 米的隧洞,从而大大拉近了闭塞小山村与现代大都市的时代距离。试思考,在隧洞未打通之前,我们如何测量小山村与大都市的距离?导入新课二师 前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

2014年高中数学 1.2应用举例教学设计 新人教A版必修5

您可能关注的文档

文章天下+ 关注
实名认证
内容提供者

各种文档应有尽有

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部