1.2.1 函数的概念【教学目标】1、通过丰富的实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型2、学习用集合语言刻画函数3、理解构成函数的要素,会求一些简单函数的定义域并能够正确使用“区间”的符号表示某些函数的定义域。4、使学生懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。【教学重难点】 教学重点:体会函数是描述变量之间的依赖关系的重要数学模型,正确理解函数的概念 教学难点:函数的概念及符号 y=f(x)的理解【教学过程】 (一)、复习初中所学函数的概念,强调函数的模型化思想;(二)、教学过程一、情境引入:函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学生学好其他的数学内容。而掌握好函数的概念是学好函数的基石。 阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想: (1)炮弹的射高与时间的变化关系问题; (2)南极臭氧空洞面积与时间的变化关系问题; (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题通过多教材上三个例子的研究,进一步 体会函数是描述变量之间的依赖关系的重要数学模型。二、合作交流1.用集合语言刻画函数关键词语有哪些?2.明确函数的三要素:定义域、值域、解析式注意:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想 和知识结构中打上深刻的烙印,为学生能学好后面的知识打下坚实的基础。 3.函数的概念: 设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B的一个函数(function). 1 记作: y=f(x),x∈A. 其中,x 叫做自变量,x 的取值范围 A 叫做函数的定义域(domain);与 x 的值相对应的 y 值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range). 注意: (1) “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; (2) 函数符号“y=f(x)”中的 f(x)表示与 x 对应的函数值,一个数,而不是 f 乘x.(3) 函数是非空数集到非空数集的对应关系。 (4)“f:A→B”表示一...