2.3 变量间的相关关系学习过程知识点 1:相关关系:思考探究: 1、有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语。吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗? 2、某地区的环境条件适合天鹅栖 息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近 栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿出生率低,于是他得出了一 个结论:天鹅能够带来孩子。你认为这样的结论可靠吗?如何证明这个问题的可靠性?分析:(1)吸 烟只是影响健康的一个因素,对健康 的影响还有其他的一些因素,两者之间非函数关系即非因果关系;(2)不对,这也是相关关系而不是函数关系。自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系。【说明】函数关系是一种非常确定的关系,而相关关系是一种非确定性关系。知识点 2:散点图:探究:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数。思考探究:1、对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或 减少,但是如果把很多个体放在一起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化? 2、为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可 以对两个变量之间的关系有一个直观的印象.以 x 轴表示年龄,y 轴表示脂肪含量,你能年龄23273941454950脂肪9.517.821.225.927.526.328.2年龄53545657586061脂肪29.630.231.430.833.535.234.6在直角坐标系中描出样本数据对应的图形吗?在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形称为散点图。知识点 3:线性相关、回归直线方程和最小二乘法: 在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点?如果散点图中的点的分布,从整体上看大致 在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线。我们所画的回归直线应该使散点图中的各点在整体上尽可能的与其接近。我们怎么来实现这一目的呢?说一说你的想法。设所求的直线方程为=bx+a,其中 a、b 是待定系数。则i=bxi+a(i=1,2,…,n).于是得到各个偏差...