第三章《不等式》复习与小结(一)一、教学目标:1.会用不等式(组)表示不等关系;2.熟悉不等式的性质,能应用不等式的性质求解“范围问题”,会用作差法比较大小;3.会解一元二次不等式,熟悉一元二次不等式、一元二次方程和二次函数的关系;4.会作二元一次不等式(组)表示的平面区域,会解简单的线性规划问题;5.明确均值不等式及其成立条件,会灵活应用均值不等式证明或求解最值。二、教学重点:不等式性质的应用,一元二次不等式的解法,用二元一次不等式(组)表示平面区域,求线性目标函数在线性约束条件下的最优解,基本不等式的应用。教学难点:利用不等式加法法则及乘法法则解题,求目标函数的最优解,基本不等式的应用。三、教学方法:探析归纳,讲练结合四、教学过程(Ⅰ)、本章知识结构(Ⅱ)、知识梳理(一)不等式与不等关系1、应用不等式(组)表示不等关系;不等式的主要性质:(1)对称性:;(2)传递性:(3)加法法则:;(4)乘法法则:;(5)倒数法则:(6)乘方法则:(7)开方法则:2、应用不等式的性质比较两个实数的大小;作差法 3、应用不等式性质证明(二)一元二次不等式及其解法一元二次不等式的解集:设相应的一元二次方程的两根为,,则不等式的解的各种情况如下表:(让学生独立完成课本第 86 页的表格)1 二次函数()的图象一元二次方程有两相异实根有两相等实根 无实根 R (三)线性规划1、用二元一次不等式(组)表示平面区域:二元一次不等式 Ax+By+C>0 在平面直角坐标系中表示直线 Ax+By+C=0 某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)2、二元一次不等式表示哪个平面区域的判断方法:由于对在直线 Ax+By+C=0 同一侧的所有点(yx,),把它的坐标(yx,)代入 Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从 Ax0+By0+C 的正负即可判断 Ax+By+C>0 表示直线哪一侧的平面区域.(特殊地,当 C≠0 时,常把原点作为此特殊点)3、线性规划的有关概念:①线性约束条件:在上述问题中,不等式组是一组变量 x、y 的约束条件,这组约束条件都是关于 x、y 的一次不等式,故又称线性约束条件.②线性目标函数:关于 x、y 的一次式 z=2x+y 是欲达到最大值或最小值所涉及的变量 x、y 的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.④可行解、可行域和最优解:...