§9.8 曲线与方程2014 高考会这样考 1.考查曲线方程的概念;2.考查直接法、定义法、相关点法求轨迹方程;3.和向量、平面几何知识相结合求动点轨迹,并研究轨迹的有关性质.复习备考要这样做 1.理解坐标法研究解析几何问题的基本思想,会根据条件求曲线的轨迹方程;2.掌握常用的几种求轨迹方程的方法.1. 曲线与方程一般地,在平面直角坐标系中,如果某曲线 C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程 f(x,y)=0 的实数解建立了如下关系:(1)曲线上点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线.2. 求动点的轨迹方程的一般步骤(1)建系——建立适当的坐标系.(2)设点——设轨迹上的任一点 P(x,y).(3)列式——列出动点 P 所满足的关系式.(4)代换——依条件式的特点,选用距离公式、斜率公式等将其转化为 x,y 的方程式,并化简.(5)证明——证明所求方程即为符合条件的动点轨迹方程.3. 两曲线的交点(1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.(2)两条曲线有交点的充要条件是它们的方程所组成的方程组有实数解.可见,求曲线的交点问题,就是求由它们的方程所组成的方程组的实数解问题.[难点正本 疑点清源]求轨迹方程的常用方法(1)直接法:直接利用条件建立 x,y 之间的关系 F(x,y)=0;(2)待定系数法:已知所求曲线的类型,求曲线方程——先根据条件设出所求曲线的方程,再由条件确定其待定系数;(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;(4)代入法(相关点法):动点 P(x,y)依赖于另一动点 Q(x0,y0)的变化而变化,并且Q(x0,y0)又在某已知曲线上,则可先用 x,y 的代数式表示 x0,y0,再将 x0,y0代入已知曲线得要求的轨迹方程;(5)参数法:当动点 P(x,y)坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将 x,y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程.11. 已知点 A(-2,0)、B(3,0),动点 P(x,y)满足PA·PB=x2-6,则点 P 的轨迹方程是________.答案 y2=x解析 PB=(3-x,-y),PA=(-2-x,-y),∴PA·PB=(3-x)(-2-x)+y2=x2-x-6+y2=x2...