电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

【课堂新坐标】(教师用书)2013-2014学年高中数学 第二章 解三角形教案 北师大版必修5

【课堂新坐标】(教师用书)2013-2014学年高中数学 第二章 解三角形教案 北师大版必修5_第1页
1/50
【课堂新坐标】(教师用书)2013-2014学年高中数学 第二章 解三角形教案 北师大版必修5_第2页
2/50
【课堂新坐标】(教师用书)2013-2014学年高中数学 第二章 解三角形教案 北师大版必修5_第3页
3/50
第二章 解三角形§1正弦定理与余弦定理1.1 正弦定理(教师用书独具)●三维目标1.知识与技能通过对任意三角形边长和角度的关系探索,掌握正弦定理的内容及其证明方法;会用正弦定理与三角形内角和定理解斜三角形的基本问题.2.过程与方法让学生从已有的几何知识出发,探究在任意三角形中,边与其对角的关系,引导学生观察、推导、比较,由特殊到一般归纳出正弦定理.3.情感、态度与价值观培养学生在方程思想指导下处理三角形问题的运算能力;培养学生合情推理探索数学规律的能力.●重点难点重点:正弦定理的探索的证明及其应用.难点:已知两边和其中一边的对角解三角形时判断个数.(教师用书独具)●教学建议 已知两边和其中一边的对角解三角形时判断个数,此类问题有两个、一个、零个的情况,需要进行讨论,可做如下处理:在△ABC 中,已知 a,b 和 A 时三角形解的情况:A 为锐角A 为钝角或直角图像关系式①a=bsin A②a≥bbsin Aba≤b解的个数一解两解无解一解无解●教学流程1⇒⇒⇒⇒⇒⇒(对应学生用书第 32 页)课标解读1.通过对特殊三角形边角间数量关系的研究,发现正弦定理,了解其向量证法(难点).2.掌握正弦定理,并能解决一些简单的三角形度量问题(重点).正弦定理【问题导思】 在 Rt△ABC 中,c 为斜边,试问,,的值相等吗?为什么?对于一般的三角形而言,,,的值是否相等?【提示】 在 Rt△ABC 中, sin A=,sin B=且 C=90°,∴==.对一般的三角形而言,也相等. 语言表述在一个三角形中,各边和它所对角的正弦的比相等符号表示==比值的含义=== 2 R (其中 R 为△ABC 的外接圆半径)变形(1)a=2 R sin __A,b=2 R sin __B,c=2 R sin __C;(2)sin A=,sin B=,sin C=;(3)a∶b∶c=sin__A ∶ sin __B ∶ sin __C.作用揭示了三角形边、角之间的数量关系三角形面积公式【问题导思】 在 Rt△ABC 中,c 为斜边,三角形的面积与 absin C,bcsin A,acsin B 的值相等吗?猜想一下在一般三角形中是否成立?【提示】 C=90°,∴S△ABC=ab=absin C,设边 c 上的高为 h,则 sin B=,sin A=,∴S△ABC=hc=acsin B=bcsin A,∴在 Rt△ABC 中,c 为斜边,三角形的面积与 absin C,bcsin A,acsin B 的值相等.猜想在一般三角形中也成立. 三角形 ABC 的面积:S=ab sin __C=bc sin __A=ac sin __B.2(对应学...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

【课堂新坐标】(教师用书)2013-2014学年高中数学 第二章 解三角形教案 北师大版必修5

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部