四川省南江四中高一数学初高中衔接教材 二次函数的三种表示方式通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式:1.一般式:y=ax2+bx+c(a≠0);2.顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k).除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数 y=ax2+bx+c(a≠0)的图象与 x 轴交点个数.当抛物线 y=ax2+bx+c(a≠0)与 x 轴相交时,其函数值为零,于是有ax2+bx+c=0. ①并且方程①的解就是抛物线 y=ax2+bx+c(a≠0)与 x 轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线 y=ax2+bx+c(a≠0)与 x 轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式 Δ=b2-4ac 有关,由此可知,抛物线 y=ax2+bx+c(a≠0)与 x 轴交点个数与根的判别式 Δ=b2-4ac 存在下列关系:(1)当 Δ>0 时,抛物线 y=ax2+bx+c(a≠0)与 x 轴有两个交点;反过来,若抛物线 y=ax2+bx+c(a≠0)与 x 轴有两个交点,则 Δ>0 也成立.(2)当 Δ=0 时,抛物线 y=ax2+bx+c(a≠0)与 x 轴有一个交点(抛物线的顶点);反过来,若抛物线 y=ax2+bx+c(a≠0)与 x 轴有一个交点,则 Δ=0 也成立.(3)当 Δ<0 时,抛物线 y=ax2+bx+c(a≠0)与 x 轴没有交点;反过来,若抛物线 y=ax2+bx+c(a≠0)与 x 轴没有交点,则 Δ<0 也成立.于是,若抛物线 y=ax2+bx+c(a≠0)与 x 轴有两个交点 A(x1,0),B(x2,0),则 x1,x2是方程 ax2+bx+c=0 的两根,所以x1+x2=ba,x1x2=ca ,即 ba =-(x1+x2), ca =x1x2.所以,y=ax2+bx+c=a(2bcxxaa) = a[x2-(x1+x2)x+x1x2] =a(x-x1) (x-x2). 由上面的推导过程可以得到下面结论:若抛物线 y=ax2+bx+c(a≠0)与 x 轴交于 A(x1,0),B(x2,0)两点,则其函数关系式可以表示为 y=a(x-x1) (x-x2) (a≠0).这样,也就得到了表示二次函数的第三种方法:3.交点式:y=a(x-x1) (x-x2) (a≠0),其中 x1,x2是二次函数图象与 x 轴交点的横坐标.今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题. 例 1 已知某二次函数的最大值为 2,图像的顶点在直线 y=x+1 上,并且图象经过点(3,-1),求二次函数的...