江苏省建陵高级中学 2013-2014 学年高中数学 2.1.3 两条直线的(1)导学案(无答案)苏教版必修 2【学习目标】掌握用斜率判断两条直线垂直的方法【课前预习】1.过点且平行于过两点的直线的方程为_________.2.直线:与直线:平行,则的值为________________.3.已知点,判断四边形的形状,并说明此四边形的对角线之间有什么关系?4. 当两条不重合的直线的斜率都存在时,若它们相互垂直,则它们的斜率的乘积等于_____________,反之,若它们的斜率的乘积_____________,那么它们互相___________,即 ______________________.当一条直线的斜率为零且另一条直线的斜率不存在时,则它们______________________.5.练习:判断下列两条直线是否垂直,并说明理由(1);(2); (3).【课堂研讨】 例 1、(1)已知四点,求证:;(2)已知直线的斜率为,直线经过点,且,求实数的值.例 2、如图,已知三角形的顶点为求边上的高所在的直线方程.例 3、求与直线垂直,且在轴上的截距比在轴上的截距大的直线方程.例 4、若直线在轴上的截距为,且与直线垂直,则直线的方程是?xy课题:2.1.3直线的平行与垂直(2)检测案 班级: 姓名: 学号: 第 学习小组【课堂检测】1.求满足下列条件的直线 的方程: (1)过点且与直线垂直;(2)过点且与直线垂直;(3)过点且与直线垂直.2.如果直线与直线垂直,则_______________.3.直线:与直线:垂直,则的值为__________ 4.若直线在轴上的截距为,且与直线:垂直,则直线的方程是___________5.以为顶点的三角形的形状是____________________.【课后巩固】1.与垂直,且过点的直线方程是________________.2.若直线在轴上的截距为,且与直线垂直,则直线的方程是 _____ __ _______3.求与直线垂直,且在两坐标轴上的截距之和为的直线方程.4.(1)已知直线:,且直线, 求证:直线的方程总可以写成;(2)直线和的方程分别是和,其中,不全为,也不全为试探求:当时,直线方程中的系数应满足什么关系?5.已知直线:和直线:,当实数为何值时,?