第十七教时教材:含绝对值的不等式目的:要求学生掌握和、差的绝对值与绝对值的和、差的性质,并能用来证明有关含绝对值的不等式。过程:一、复习:绝对值的定义,含有绝对值的不等式的解法 当 a>0 时,二、定理: 证明:∵ ① 又∵a=a+b-b |-b|=|b|由①|a|=|a+b-b|≤|a+b|+|-b| 即|a|-|b|≤|a+b| ②综合①②: 注意:1 左边可以“加强”同样成立,即 2 这个不等式俗称“三角不等式”——三角形中两边之和大于第三边,两边之差小于第三边3 a,b 同号时右边取“=”,a,b 异号时左边取“=”推论 1:≤推论 2: 证明:在定理中以-b 代 b 得:即:三、应用举例例一 至 例三见课本 P26-27 略例四 设|a|<1, |b|<1 求证|a+b|+|a-b|<2证明:当 a+b 与 a-b 同号时,|a+b|+|a-b|=|a+b+a-b|=2|a|<2当 a+b 与 a-b 异号时,|a+b|+|a-b|=|a+b-(a-b)|=2|b|<2∴|a+b|+|a-b|<2例五 已知 当 ab 时 求证:证一: 证二:(构造法)如图: 由三角形两边之差小于第三边得:四、小结:“三角不等式”五、作业:P28 练习和习题 6.5用心 爱心 专心OABab1